期刊文献+

酿酒酵母低温耐受机制的研究进展 被引量:2

Advances in Research on the Mechanism of Low Temperature Tolerance of Saccharomyces Cerevisiae
下载PDF
导出
摘要 在酿酒工艺中,能够决定葡萄酒的品质和产量的主要因素是酵母和发酵的温度。对以往的酿造工作进行总结得出,低温发酵可以有效提升葡萄酒的品质,因其在低温发酵的过程中会使酯类、醇类、酮类等物质进行合成,呈现出不同的芳香。然而实际操作中,低温发酵很难实现,在低温的作用下,酵母的发酵时间会明显延长,并且细胞的活性也有所降低,严重的可能导致停止发酵的现象。为此,我们需要提高对酿酒酵母在低温下的耐受机制研究工作,来提升葡萄酒的品质。 In brewing technology, the main factors that determine the quality and yield of wine are yeast and fermentation temperature. From the brewing practice, it can be concluded that low temperature fermentation can improve the quality of wine effectively since substances such as esters, alcohols and ketones are synthesized during low temperature fermentation process, giving different fragrance. However, in practice,low temperature fermentation is difficult to achieve. Under low temperature, the yeast's fermentation time will be significantly extended and cell activity will become lower, even resulting in the end of fermentation. Therefore, we should enhance the research on the mechanism of low temperature tolerance of Saccharomyces cerevisiae to improve the quality of wine.
作者 刘文玉 LIU Wenyu(Heilongjiang Academy of light industry, Harbin 150010, Heilongjiang, China)
出处 《酿酒》 CAS 2017年第5期11-12,共2页 Liquor Making
关键词 酿酒酵母 低温发酵 低温耐受机制 Saccharomyces cerevisiae low temperature fermentation mechanism of low temperature tolerance
  • 相关文献

参考文献2

二级参考文献63

  • 1张多连.液体密度测定方法种种[J].甘肃教育,2006(08A):52-53. 被引量:3
  • 2孙晓璐,孙玉梅,曹芳,华艳艳,赵宗保.对产油脂酵母的细胞破碎方法及油脂提取效果的比较[J].河南工业大学学报(自然科学版),2007,28(4):67-69. 被引量:28
  • 3Christie A H,Gregory J T,Allen G G. Vacuolar H^+-ATPase,but not mitoc.hondrlal FI F0-ATPase,is required for NaCI tolerance in Saccharomyces cerevisiae[J].FEMS Microbiology Letters,2002,(05):227-232.
  • 4Sychrova H. Yeast as a model organism to study transportand homeostasis of alkali metal cations[J].Physiological Research,2004.S91-S98.
  • 5Prista C,Almagro A,Loureito-Dias M C. Phsiologicalbasis fbr the high salt Tolerance of DebmTinyces Hansenii[J].Applied and Environmental Microbiology,1997,(10):4005-4009.
  • 6Seranno R,Mulet J M,Rios G. A glimpse of themechanisms of ion homeostasis during salt stress[J].Journal of Experimental Botany,1999.1023-1036.
  • 7Rebecca A,Stuart L. A small molecule suppressor of FK506that targets the mitoehondria and modulates ]onic balance in Saccharomyces cerevisiae[J].Chemistry and Biology,2003,(06):521-531.
  • 8Silvia P,Jaromir Z,Hana S. Saccharomyces cerevisiae BY4741and W303-1A laboratol7 strains differ in salt tolerance[J].Fungal Biology,2010.144-150.
  • 9Luisa N,Fernanda L,Candida L. New insights on glyceroltransport in Saccharomyces cerevisiae[J].FEBS Letters,2004,(03):160-162.
  • 10Takashi H,Kazuyuki Y,Keisuke N. Proteomic analysisof responses to osmotic stress in laboratory and sake-brewing strains of Saccharomyces cerevisiae[J].Process Biochemistry,2009.647-653.

共引文献12

同被引文献13

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部