期刊文献+

Redox switch of ionic transport in conductive polypyrrole-engineered unipolar nanofluidic diodes 被引量:3

Redox switch of ionic transport in conductive polypyrrole-engineered unipolar nanofluidic diodes
原文传递
导出
摘要 Controlling ion transport in nanoconfined spaces is a key task for the creation of smart nanofluidic devices.In this work,redox-active polypyrrole (PPy) polymers are introduced into anodic aluminum oxide (AAO) nanochannels to form smart unipolar nanofluidic diodes (UNDs) for the first time.The ionic transport behavior of the present polypyrrole-engineered UNDs can be controlled through the redox reactions of PPy.Under an applied oxidation potential,conductive PPy exhibits several redox states carrying different charges,following the formation of polarons and bipolarons with different oxidation states.Combined with the asymmetric distribution of PPy in the AAO nanochannels,the UNDs investigated here exhibit redox-switchable ion rectification and ion-gating properties.The influence of the charge asymmetry of the UNDs on their ionic transport behavior is assessed by precisely controlling the length of oxidized PPy segments in the AAO nanochannels and by carrying out theoretical simulations based on the Poisson and Nernst-Planck (PNP) equations. Controlling ion transport in nanoconfined spaces is a key task for the creation of smart nanofluidic devices.In this work,redox-active polypyrrole (PPy) polymers are introduced into anodic aluminum oxide (AAO) nanochannels to form smart unipolar nanofluidic diodes (UNDs) for the first time.The ionic transport behavior of the present polypyrrole-engineered UNDs can be controlled through the redox reactions of PPy.Under an applied oxidation potential,conductive PPy exhibits several redox states carrying different charges,following the formation of polarons and bipolarons with different oxidation states.Combined with the asymmetric distribution of PPy in the AAO nanochannels,the UNDs investigated here exhibit redox-switchable ion rectification and ion-gating properties.The influence of the charge asymmetry of the UNDs on their ionic transport behavior is assessed by precisely controlling the length of oxidized PPy segments in the AAO nanochannels and by carrying out theoretical simulations based on the Poisson and Nernst-Planck (PNP) equations.
出处 《Nano Research》 SCIE EI CAS CSCD 2017年第11期3715-3725,共11页 纳米研究(英文版)
基金 This work was supported by National Natural Science Foundation of China (Nos. 21571011, 21641006), National Basic Research Program of China (No. 2014CB931803), Fundamental Research Funds for the Central Universities (N0s. YWF-15-HHXY-019, YWF-16- JCTD-B-03) and China Postdoctoral Science Foundation Grant (No. 2015M580035).
关键词 redox switch POLYPYRROLE nanofluidic diodes ion rectification ion gating redox switch,polypyrrole,nanofluidic diodes,ion rectification,ion gating
分类号 O [理学]
  • 相关文献

参考文献2

二级参考文献3

共引文献2

同被引文献13

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部