摘要
A novel microfabrication process based on optimized photolithography combined with pyrolysis-reduction is proposed to fabricate interdigital porous carbon/tin quantum dots (C/Sn QDs) microelectrodes.C/Sn QDs active microelectrodes are also employed as current collectors of a micro-supercapacitor (MSC).A uniform dispersion of Sn QDs (diameter of ~3 nm) in the carbon matrix is achieved using our facile and controllable microfabrication process.The as-fabricated C/Sn QDs MSC obtained by carbonization at 900 ℃ exhibits a higher areal specific capacitance (5.79 mF·cm-2) than that of the pyrolyzed carbonbased MSC (1.67 mF·cm-2) and desirable cycling stability (93.3% capacitance retention after 5,000 cyclic voltammetry cycles).This novel microfabrication process is fully compatible with micromachining technologies,showing great potential for large-scale fine micropatterning of carbon-based composites for applications in micro/nano devices.
A novel microfabrication process based on optimized photolithography combined with pyrolysis-reduction is proposed to fabricate interdigital porous carbon/tin quantum dots (C/Sn QDs) microelectrodes.C/Sn QDs active microelectrodes are also employed as current collectors of a micro-supercapacitor (MSC).A uniform dispersion of Sn QDs (diameter of ~3 nm) in the carbon matrix is achieved using our facile and controllable microfabrication process.The as-fabricated C/Sn QDs MSC obtained by carbonization at 900 ℃ exhibits a higher areal specific capacitance (5.79 mF·cm-2) than that of the pyrolyzed carbonbased MSC (1.67 mF·cm-2) and desirable cycling stability (93.3% capacitance retention after 5,000 cyclic voltammetry cycles).This novel microfabrication process is fully compatible with micromachining technologies,showing great potential for large-scale fine micropatterning of carbon-based composites for applications in micro/nano devices.
基金
This work was supported by the National Key Research and Development Program of China (Nos. 2016YFA0202603 and 2016YFA0202604), the National Basic Research Program of China (No. 2013CB934103),the Programme of Introducing Talents of Discipline to Universities (No. B17034), the National Natural Science Foundation of China (Nos. 51502227, 51579198 and 51521001), the National Natural Science Fund for Distinguished Young Scholars (No. 51425204), the China Postdoctoral Science Foundation (No. 2015T80845), the Hubei Province Natural Science Fund (No. 2016CFB582), the Fundamental Research Funds for the Central Universities (WUT: 2016III001 and 2016III005). Prof. Liang He and Prof. Liqiang Mai gratefully acknowledged fi~andal support from China Scholarship Council (Nos. 201606955094 and 201606955096).