摘要
核函数参数选择是支撑向量机(Support Vector Machine,SVM)研究的主要问题之一。提出了检验样本是否呈高斯分布的方法,确定最优核参数选择的依据。采用人工数据集进行回归实验,验证了文中方法的有效性。
The kernel parameter selection is one of the key problems for support vector machine (SVM). In this paper, a new way to select the kernel function and its parameter, is presented. It is based on the characteristics of data distribu- tion. The paper presents an approach to determine Gauss distribution. And then on the basis of determining Gauss distri- bution, this paper discusses how to select the kernel function and its parameter. The simulation experiments demonstrate the feasibility and the effectiveness of the presented approach.
作者
郭金玲
Guo Jinling(School of Information, Business College of Shanxi University, Shanxi Taiyuan 030031)
出处
《办公自动化》
2017年第18期39-40,共2页
Office Informatization
基金
山西大学商务学院院基金(2016008)
关键词
支撑向量机
回归
高斯分布
Support vector machine Regression Gauss distribution