期刊文献+

一种基于数据分布的SVM回归方法

A Kind of SVM Regression Method based on Data Distribution
下载PDF
导出
摘要 核函数参数选择是支撑向量机(Support Vector Machine,SVM)研究的主要问题之一。提出了检验样本是否呈高斯分布的方法,确定最优核参数选择的依据。采用人工数据集进行回归实验,验证了文中方法的有效性。 The kernel parameter selection is one of the key problems for support vector machine (SVM). In this paper, a new way to select the kernel function and its parameter, is presented. It is based on the characteristics of data distribu- tion. The paper presents an approach to determine Gauss distribution. And then on the basis of determining Gauss distri- bution, this paper discusses how to select the kernel function and its parameter. The simulation experiments demonstrate the feasibility and the effectiveness of the presented approach.
作者 郭金玲 Guo Jinling(School of Information, Business College of Shanxi University, Shanxi Taiyuan 030031)
出处 《办公自动化》 2017年第18期39-40,共2页 Office Informatization
基金 山西大学商务学院院基金(2016008)
关键词 支撑向量机 回归 高斯分布 Support vector machine Regression Gauss distribution
  • 相关文献

参考文献3

二级参考文献30

  • 1李四海,魏邦龙,李爱英.基于小波神经网络的空气污染指数预报[J].长春大学学报,2013,23(2):146-148. 被引量:6
  • 2林大超,安凤平,郭章林,张立宁.滑坡位移的多模态支持向量机模型预测[J].岩土力学,2011,32(S1):451-458. 被引量:31
  • 3Sun J,Xu J,Liu Z,et al.Refined phylogenetic profiles method for predicting protein-protein interactions[J].Bioinformatics,2005,21(16):3409-3415.
  • 4Sato T,Yamanishi Y,Horimoto K.Prediction of protein-protein interactions from phylogenetic trees using partial correlation coefficient[J].Genome Imformatics,2003,14:496-497.
  • 5Bakar S A,Taheri J,Zomaya A Y.FIS-PNN:A hybrid computational method for protein-protein interaction prediction[C]//9th IEEE/ACS International Conference on Computer Systems and Applications.[s.l.]:IEEE Press,2011:196-203.
  • 6Urquiza J M,Rojas I,Pomares H,et al.Method for prediction of protein-protein interactions in yeast using genomics/proteomics information and feature selection[J].Neurocomputing,2011,74(16):2 683-2 690.
  • 7Yu J T,Guo M Z,Chris J,et al.Simple sequence-based kernels do not predict protein-protein interactions[J].Bioinformatics,2010.26(20):2 610-2 614.
  • 8Martin S,Rose D,Faulon J L,et al.Predicting protein-protein interactions using signature products[J].Bioinformatics,2005,21(2):218-226.
  • 9Cortes C,Vapnik V.Support vector network[J].Machine Learning,1995,20 (3):273-297.
  • 10Chatterjee P,Basu S,Kundu M,et al.PPI_SVM:Prediction of protein-protein interactions using machine learning,domain-domain affinities and frequency tables[J].Cellular & Molecular Biology Letters,2011,16 (2):264-278.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部