期刊文献+

A Study on the Geological-Geochemical Dynamicsof Hydrothermal Ore Deposition as Exemplified by the Muping-Rushan Gold Deposit Belt,Eastern Shandong, China

A Study on the Geological-Geochemical Dynamics of Hydrothermal Ore Deposition as Exemplified by the Muping-Rushan Gold Deposit Belt,Eastern Shandong, China
下载PDF
导出
摘要 This paper presents a method of establishing a hydrothermal ore-forming reaction system. On the basis of the study of four typical hydrothermal deposits, the folowing conclusions concerning geochemical dynamic controlling during hydrothermal mineralization have been drawn: (1 ) The regional tectonic activities control the concentration and dispersion of elements in the ore-forming process in terms of their effects on the thermodynamic nature and conditions of the ore-forming reaction system. (2) During hydrothermal mineralization the activities of ore-bearing faults can be divided into two stages: the brittle splitting stage and the brirtle-tough tensing stage, which would create characteristically different geodynamic conditions for the geochemical thermodynamic ore-forming system. (3) The hydrothermal ore-forming reaction system is an open dynamic system. At the brittle splitting stage the system was so strongly supersaturated and unequilibrated as to speed up and enhance the crystallization and differentiation of ore-forming fluids. And at the brittle-tough tensing stage, the ore-forming system was in a weak supersaturated state; with decreasing temperature and pressure the crystallization of oreforming material would slow down, and it can be regarded as an equilibrated state. (4) In the later stages of hydrothermal evolution, gold would be concentrated in the residual ore-forming solution. The pulsating fracture activity in this stage led to the crush of pyrite ore and it was then filled with gold-enriched solution, forming high-grade "fissure" gold ore. This ore-forming process could be called the coupling mechanism of ore formation. This paper presents a method of establishing a hydrothermal ore-forming reaction system. On the basis of the study of four typical hydrothermal deposits, the folowing conclusions concerning geochemical dynamic controlling during hydrothermal mineralization have been drawn: (1 ) The regional tectonic activities control the concentration and dispersion of elements in the ore-forming process in terms of their effects on the thermodynamic nature and conditions of the ore-forming reaction system. (2) During hydrothermal mineralization the activities of ore-bearing faults can be divided into two stages: the brittle splitting stage and the brirtle-tough tensing stage, which would create characteristically different geodynamic conditions for the geochemical thermodynamic ore-forming system. (3) The hydrothermal ore-forming reaction system is an open dynamic system. At the brittle splitting stage the system was so strongly supersaturated and unequilibrated as to speed up and enhance the crystallization and differentiation of ore-forming fluids. And at the brittle-tough tensing stage, the ore-forming system was in a weak supersaturated state; with decreasing temperature and pressure the crystallization of oreforming material would slow down, and it can be regarded as an equilibrated state. (4) In the later stages of hydrothermal evolution, gold would be concentrated in the residual ore-forming solution. The pulsating fracture activity in this stage led to the crush of pyrite ore and it was then filled with gold-enriched solution, forming high-grade 'fissure' gold ore. This ore-forming process could be called the coupling mechanism of ore formation.
出处 《Chinese Journal Of Geochemistry》 EI CAS 1996年第4期289-295,共7页 中国地球化学学报
关键词 热液沉积 成矿作用 控矿构造 地质特征 金矿床 地球化学 山东 金属矿床 hydrothermal deposit ore-forming reaction system tectonic dynamic controlling coupling mechanism of ore formation Shandong
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部