期刊文献+

语音端点检测在实时语音截取中的应用 被引量:3

Application of speech endpoint detection in real-time voice interception
下载PDF
导出
摘要 语音端点检测在语音识别系统中占有重要地位。针对在噪声多变的环境中实时截取完整语音信号存在困难,文章提出一种实时语音端点检测方法。该方法首先提取每帧信号的短时平均过零率与Mel频率倒谱系数;然后利用前N帧背景噪声的Mel频率倒谱系数对当前帧进行归一化,并以该特征矢量的L2范数作为另一特征;最后根据多特征分析对有效语音信号进行截取。实验结果表明,该方法在多变的噪声环境中,截取完整语音信号具有较高准确率。 The speech endpoint detection plays an important role in speech recognition system. It is difficult to intercept the complete speech signal in real-time environment in noisy environment. This paper presents a real-time speech endpoint detection method. Firstly extracts the short-term average zero-crossing rate and Mel frequency cepstrum coefficient(MFCC)of each frame signal. Then, MFCC of the headmost N-frame background noise normalizes the current frame, a feature vector whose L2 norm as another feature. Finally, the effective speech signal was intercepted according to the multi-feature analysis. The experimental results show that the method has higher accuracy in intercepting the complete speech signal in the variable noise environment.
出处 《无线互联科技》 2017年第22期50-53,共4页 Wireless Internet Technology
基金 国家自然科学基金 项目编号:61422201
关键词 语音端点检测 MEL频率倒谱系数 短时平均过零率 多特征 speech endpoint detection Mel frequency cepstrum coefficient short-term average zero-crossing rate multi-feature
  • 相关文献

参考文献5

二级参考文献48

  • 1江官星,王建英.一种改进的检测语音端点的方法[J].微计算机信息,2006,22(05S):138-139. 被引量:27
  • 2叶裕雷,戴文战.一种基于新阈值函数的小波信号去噪方法[J].计算机应用,2006,26(7):1617-1619. 被引量:47
  • 3L F Lamel,L R Rabner,A E Rosenberg,J G Wilpon.An Improved Endpoint Detector For Isolated Word Recognition[J].IEEE Transactions on Acoustics,Speech and Signal Processing,1981,29(4):777-785.
  • 4Lu Lie,Jiang Hao,Zhang Hong-jiang.A Robust Audio Classification and segmentation method[C].Proc of the 9th ACM Intemational Conference on Multimedia,2001.203-211.
  • 5M H Savoji.A Robust Algorithm for Accurate Endpoint of Speech[C].Speech Communication,1989-8:45-60.
  • 6Shen Jia-lin,Hung Jeih-weih,Lee Lin-shan.Robust Entropy-based Endpoint Detection for speech Recognition in Noisy Environments[C].International Conference on Spoken Language Processing,1998.232-238.
  • 7Wu Bing-Fei,Wang Kun-Ching.Robust Endpoint Detection Algorithm Based on the Adaptive Band-Partitioning Spectral Entropy in Adverse Environments[J].IEEE Transactions on Speech and Audio Processing,2005,13(5):762-775.
  • 8Chuan Jia,Bo Xu.An Improved Entropy-Based Endpoint Detection Algorithm[C].ISCSLP,2002.285-288.
  • 9Hemant Misra,Shajith Ikbal,Sunil Sivadas,Herve Bourlard.Multi-resolution spectral entropy feature for robust ASR[C].ICASSP'05,2005,(3):253-256.
  • 10Wu Gin-Der,Lin Chin-Teng.Word Boundary Detection with Mel-Scale Frequency Bank in Noisy Environment[J].IEEE Transactions on Speech and Audio Processing,2000,8(5):541-554.

共引文献84

同被引文献17

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部