期刊文献+

生产与分销联合决策的双层机会约束规划问题研究

Bilevel Chance-constrained Programming for Joint Decision-making of Production and Distribution
下载PDF
导出
摘要 生产与分销的决策在供应链中是非常关键的。目前很多企业在进行决策时,没有考虑到生产与分销的关系以及供应链系统的不确定性。文章考虑在不确定生产与随机需求条件下,如何将生产与分销进行联动决策的问题。建立了一个包含随机变量的双层机会约束规划模型,将分销与生产的决策模型分别作为上下层,且双层都以成本最小化为目标函数。进而利用确定性等价类方法、Monte Carlo随机模拟以及改进的遗传算法解文中模型。然后,利用算例来验证模型与算法的有效性。 Production and distribution decisions are very crucial in the supply chain. Many companies in the decision-making of production and distribution do not take into account the connection between the two and the uncertainty in supply chain present- ly. In this paper, we focus on how to make the decision of production and distribution jointly under the condition of uncertain production and stochastic demand. A bilevel chance-constrained programming model with random variables is established to mini- mize the cost, which includes upper-level distribution decision and lower-level production decision. Then solve the model by de- terministic equivalent method, Monte Carlo method and improved genetic algorithm. An example is given to validate the validity of the model and algorithm in this paper.
作者 周梦莹
出处 《物流科技》 2017年第11期11-16,共6页 Logistics Sci-Tech
关键词 生产分销决策 双层规划 机会约束规划 MONTE CARLO模拟 遗传算法 production and distribution decision bilevel programming chance-constrained programming Monte Carlo method genetic algorithm
  • 相关文献

参考文献3

二级参考文献28

  • 1肖剑,陈义华.考虑费用函数约束的物流配送中心选址双层规划模型[J].物流技术,2004,23(11):89-90. 被引量:7
  • 2Wang Guang-min,Wang Xian-jia, Wan Zhong-ping, Jia Shi-hui. An adaptive genetic algorithm for solving bilevel linear programming problem[J].Springer Netherlands, 2007,28 (2) : 1 606-1 612.
  • 3Amouzegar M A. A global optimization method for nonlinear bilevel programming problems [J].IEEE Trans,an Systems; Man,and Cybernetics-Part B:Cybemetics, 1999,29(6 ) : 771-777.
  • 4Dempe S. Foundations of Bilevel of Programming [ M ]. Volume 61 of Nonconvex optimization and its application Boston: Kluwer Academic Publisher, 2002.
  • 5Colson B, Marcotte P, Savard G. Bilevel programming: A survey [ J ]. 4OR: Quarterly Journal of the Belgian, French and Italian Operations Research Societies, 2005, 3: 87--107.
  • 6Candler W, Townsley R. A linear two-level programming problem[J]. Computers and Operations Research, 1982, 9 : 59--76.
  • 7Bard J F, Moore J T. A branch and bound algorithm for the bilevel programming problem [ J ]. SIAM Journal of Scientific and Statistical Computing, 1990, 1 : 281--292.
  • 8Mathieu R, Pittard L, Anandalingam G. Genetic algorithm based approach to bi-level linear programming[ J ]. Operations Research, 1994, 28: 1--21.
  • 9Genderau M, Marcotte P, Savard G. A hybrid tabu-ascent algorithm for the linear bilevel programming problem[ J]. Journal of Global Optimization, 1996, 8 : 217--233.
  • 10Wang Y, Jiao Y, Li H. An evolutionary algorithm for solving ninlinear bilevel programming based on a new constraint-handling scheme[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 2005, 35: 221--232.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部