期刊文献+

非Lipschitz条件下一类随机发展方程的μ-概几乎自守解

μ-pseudo almost automorphic solutions for a class of stochastic evolution equations under non-Lipschitz conditions
原文传递
导出
摘要 在非Lipschitz条件下建立了由布朗运动驱动的一类非线性随机发展方程的μ-概几乎自守解的存在性,并举例说明结论的合理性。 We establish the existence of μ-pseudo almost automorphic mild solutions for a class of nonlinear stochastic evolution equations driven by Brownian motion under some non-Lipschitz conditions. Moreover, an example is given to illustrate our results.
作者 荣文萍 崔静 RONG Wen-ping CUI Jing(School of Mathematics and Computer Science, Anhui Normal University, Wuhu 241003, Anhui, China)
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2017年第10期64-71,76,共9页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(11401010) 安徽省自然科学基金资助项目(1708085MA03) 安徽师范大学研究生科研与实践项目(2015cxsj118)
关键词 μ-概几乎自守过程 随机发展方程 不动点定理 μ-pseudo almost automorphic stochastic evolution equation fixed point theorem
  • 相关文献

参考文献1

二级参考文献17

  • 1φsendal Bernt. Stochastic Differential Equations, 6th ed. Springer, Berlin, Heidelberg, 2005.
  • 2Bezandry, P. Existence of almost periodic solutions to some functional integrodifferential stochastic evolu- tion equations. Star. Prob. Lett., 78:2844-2849 (2008).
  • 3Bezandry, P., Diagana, T. Existence of almost periodic solutions to some stochastic differential equations. Appl. AnaL, 86:819-827 (2007).
  • 4Bochner, S. Curvarure and Betti numbers in real and complex vector bundles. Univ. Politec. Torino. Rend. Sere. Mat., 15:225-253 (1955-56).
  • 5Chang, Y.K., Zhao, Z.H., N'Guerekata, G.M. Square-mean almost automorphic mild solutions to nonau- tonomous stochastic differential equations in Hilbert spaces. Comput. Math. Appl., Doi:10.1016/j.camwa.2010.11.014 (2010).
  • 6Diagana, T., N'Guerekata, G.M. Almost automorphic solutions to semilinear evolution equations. Funct. Differ. Equ., 13:195-206 (2006).
  • 7Diagana, T., N'Guerekata, G.M. Almost automorphic solutions to some classes of partial evolution equa- tions. Appl. Math. Lett., 20:462 466 (2007).
  • 8Fu, M.M., Liu, Z.X. Square-mean almost automorphic solutions for some stochastic differential equations. Proc. Amer. Math. Soc., 138:3689-3701 (2010).
  • 9N'Guerekata, G.M. Almost Automorphic and Almost Periodic Functions in Abstract Spaces. Kluwer Academic Publ., 2001.
  • 10N'Guerekata, G.M. Topics in Almost Automorphy. Springer, New York, Boston, Dordrecht, London Moscow, 2005.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部