摘要
设H为无限维复可分的Hilbert空间,B(H)为H上的有界线性算子的全体。T∈B(H)称为是满足a-Weyl定理,若σa(T)\σaw(T)=πa00(T),其中σa(T),σaw(T)分别表示算子T∈B(H)的逼近点谱和本质逼近点谱,πa00(T)={λ∈isoσa(T):0<dim N(T-λI)<∞}。本文通过定义新的谱集,给出了算子演算满足a-Weyl定理的判定方法,同时也考虑了a-Weyl定理的摄动。
Let H be an infinite dimensional separable complex Hilbert space and B(H) the algebra of all bounded linear operators on H. For T ∈ B( H), we call a-Weyl's theorem holds for T if σ'a (T) /σaw (T) = πa∞ ( T), where σa (T) and σaw (T) denote the approximate point spectrum and essential approximate point spectrum respectively, and π∞ (T) = | λ ∈ iso σa(T) :0 〈 dimN( T- λI) 〈 ∞}. Using the new spectrum defined in this paper, we investigate a-Weyl's theorem for operator functional. In addition, we explore the compact perturbation of a-Weyl's theorem.
作者
孔莹莹
曹小红
戴磊
KONG Ying-ying CAO Xiao-hong DAI Lei(School of Mathematics and Information Science, Shaanxi Normal University, Xi,an 710119, Shaanxi, China College of Mathematics and Physics, Weinan Normal University, Weinan 714099, Shaanxi, China)
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2017年第10期77-83,共7页
Journal of Shandong University(Natural Science)
基金
国家自然科学基金资助项目(11471200
11501419
11371012
11571213)
陕西师范大学中央高校基本科研业务费专项资金资助(GK201601004)
渭南市科技计划项目(2016KYJ-3-3)
陕西省教育厅项目(17JK0279)
渭南师范学院自然科学人才项目(15ZRRC10)
关键词
a-Weyl定理
逼近点谱
紧摄动
a-Weyl,s theorem
approximate point spectrum
compact perturbation