脑——机接口系统组成概述
摘要
近年来,脑—机接口技术得到了长足的进步与发展。本文在已有相关工作基础之上,介绍脑际接口系统的主要组成,并对组成部分涉及到的关键技术做了介绍与总结,对脑电信号的采集、信号预处理、特征提取和特征分类等技术做了阐述,最后对脑机接口在生活和军事方面的应用进行了展望。
出处
《电子世界》
2017年第21期72-73,共2页
Electronics World
二级参考文献74
-
1LEMM S, BLANKERTZ B, CURIO G, et al. Spatio-spec- tral filters for improving the classification of single trial EEG[J]. IEEE Transactions on Biomedical Engineering, 2005, 52(9): 1541-1548.
-
2LIU Hesheng, GAO Xiaorong, YANG Fusheng, et al. Imagined hand movement identification based on spatio- temporal pattern recognition of EEG [ C ]//Proceedings of the First International IEEE EMBS Conference on Neural Engineering. Capri Island, Italy, 2003: 599-602.
-
3BIRBAUMER N, HINTERBERGER T, KUBLER A, et al. The thought-translation device (TTD) : neurobehavior-al mechanisms and clinical outcome [ J ]. IEEE Transac- tions on Neural Systems and Rehabilitation Engineering, 2003, 11(2): 120-123.
-
4HINTERBERGER T, WILHELM B, MELLINGER J, et al. A device for the detection of" cognitive brain functions in completely paralyzed or unresponsive patients [ J ]. IEEE Transactions on Biomedical Engineering, 2005, 52 (2) : 211-220.
-
5HINTERBERGER T, WEISKOPF N, VEIT R, et al. An EEG-driven brain-computer interface combined with func- tional magnetic resonance imaging (fMRI) [J]. IEEE Transactions on Biomedical Engineering, 2004, 51 (6) : 971-974.
-
6BASHASHATI A, WARD R K, BIRCH G E. A new de- sign of the asynchronous brain computer interface using the knowledge of the path of features [ C ]//Proceedings of the 2nd International IEEE EMBS Conference on Neural Engi- neering. Arlington, USA, 2005: 101-104.
-
7BIRCH G E, MASON S G, BORISOFF J F. Current trends in brain-computer interface research at the Neil Squire foundation[Jl. IEEE Transactions on Neural Sys- tems and Rehabilitation Engineering, 2003, 11 (2) : 123- 126.
-
8FATOURECHI M, BASHASHATI A, BORISOFF J F, et al. Improving the performance of the LF-ASD brain com- puter interface by means of genetic algorithm [ C ]//Pro- ceedings of the Fourth IEEE International Symposium on Signal Processing and Information Technology. Roma, Ita- ly, 2004: 38-41.
-
9FATOURECHI M, BASHASHATI A, WARD R K, et al. A hybrid genetic algorithm approach for improving the per- formance of the LF-ASD brain computer interface [ C ]// Proceedings of IEEE International Conference on Acous- tics, Speech, and Signal Processing. Philadelphia, USA, 2005. 34%348.
-
10GDMUNDUR S, JOHANNES R S, JON A B. Wavelet- package transformation as a preprocessor of EEG wave- forms for classification [ C ]//Proceedings of the 19th Inter- national Conference IEEE/EMBS. Chicago, USA, 1997: 1305-1308.
共引文献14
-
1王斐,杨广达,张丹,赵姝颖.脑机接口在机器人控制中的应用研究现状[J].机器人技术与应用,2012(6):12-15. 被引量:1
-
2张毅,罗明伟,罗元.脑电信号的小波变换和样本熵特征提取方法[J].智能系统学报,2012,7(4):339-344. 被引量:21
-
3李明爱,李骧,杨金福,郝冬梅.基于小波包法与CSSD的P300特征提取方法[J].北京工业大学学报,2014,40(4):521-527. 被引量:2
-
4陈黎黎,国红军,陈国龙.基于ERD/ERS现象的运动想象脑电信号分类研究[J].陕西科技大学学报(自然科学版),2015,35(4):157-161. 被引量:4
-
5周宁城.基于EMD与CSP算法的运动想象脑电信号分类[J].武警工程大学学报,2015,0(6):27-30.
-
6于路,薄华.基于改进EMD的运动想象脑电信号识别算法研究[J].微型机与应用,2016,35(9):58-61. 被引量:9
-
7钱婷婷,陈黎黎,国红军.运动想象脑电信号的分类研究[J].福建电脑,2016,32(11):53-54. 被引量:1
-
8叶志雄,罗锦宏,糜超,邹凌.16通道脑电采集系统设计与实现[J].电子技术应用,2017,43(8):73-76. 被引量:4
-
9马也,姜光萍.P300脑电信号的特征提取及分类研究[J].山东工业技术,2017(10):202-204. 被引量:2
-
10马也,常天庆,郭理彬.运动想象脑电信号特征提取与分类算法研究[J].计算机工程与应用,2017,53(16):149-154. 被引量:4
-
1尧俊瑜,邬长杰.嵌入式脑机接口系统设计[J].现代计算机(中旬刊),2017(10):82-84.
-
2央行规范人民币现金机具行业[J].中国经济周刊,2017,0(43):8-8.
-
3刘光达,王灿,李明佳,孙瑞辰,蔡靖,宫晓宇.基于多特征和BP神经网络的脑-机接口研究[J].电子技术应用,2017,43(9):72-75. 被引量:3
-
4魏亮,刘小兵.“脑控”技术与脑-机接口[J].中国科技术语,2017,19(5):74-74.
-
5姜海燕.电动汽车轴承振动信号预处理简述[J].轻工科技,2017,33(9):29-30.
-
6李飞,戴加飞,李锦,王俊,侯凤贞.自回归模型和隐马尔可夫模型在癫痫脑电识别中的应用[J].北京生物医学工程,2017,36(5):478-482. 被引量:3
-
7李方博,刘方毅.脑机接口研究概述[J].电子世界,2017,0(21):74-74.
-
8於崇铭,任风云,刘少坤.最小二乘法在铁路振动信号预处理中的应用[J].装备制造技术,2017(8):136-138.
-
9公维军.神经义肢技术在脊髓损伤患者康复中的应用进展[J].中国现代神经疾病杂志,2017,17(6):399-402.
-
10刘英.浅谈网络背景下的初中语文阅读教学[J].成功,2017(14):124-124.