摘要
We report the realization of a deterministic single-atom preparation by the method of all-optical feedback. Using a fast-real-time feedback, the light-induced atom desorption effect and blue detuned light-induced atom collision process can increase a success probability of single-atom preparation up to more than 99%. We investigate the dynamics of loading single atom trapped in a trap with a size of hundreds of micrometers into a pair of microscopic tweezers. The detailed experimental results show that the feedback loading is spatially insensitive, which implies that it is possible to use the feedback protocol to simultaneously implement the loading of large number of qubits arrays.
We report the realization of a deterministic single-atom preparation by the method of all-optical feedback. Using a fast-real-time feedback, the light-induced atom desorption effect and blue detuned light-induced atom collision process can increase a success probability of single-atom preparation up to more than 99%. We investigate the dynamics of loading single atom trapped in a trap with a size of hundreds of micrometers into a pair of microscopic tweezers. The detailed experimental results show that the feedback loading is spatially insensitive, which implies that it is possible to use the feedback protocol to simultaneously implement the loading of large number of qubits arrays.
基金
Project supported by the National Major Scientific Research Program of China(Grant No.2012CB921601)
the National Natural Science Foundation of China(Grant Nos.61205215,11274213,and 61475091)
the National Key Research and Development Program of China(Grant No.2017YFA0304502)