期刊文献+

电子束能量沉积的相对论Fokker-Planck方程的计算方法 被引量:3

Numerical Method of Relativistic Fokker-Planck Equation for Energy Deposition of Fast Electrons
下载PDF
导出
摘要 针对相对论电子束在高密度等离子体中的能量沉积过程,建立三维动量空间中快电子能量沉积的相对论Fokker-Planck方程的可计算物理模型,构造数值算法并研制数值模拟程序.通过与解析模型和蒙特卡罗模拟相比较,验证数值方法和程序的可靠性.在二维动量空间的模拟基础上,通过计算能量区间为0.5 MeV^3.5 MeV的快电子在背景密度为300 g·cm^(-3)的氘氚等离子体中的能量沉积过程,发现由于碰撞效应使平均散射角趋近平衡,三维动量空间计算快电子连续射程和穿透深度与二维结果基本一致. For energy deposition of fast electrons in high density plasma,a relativistic Fokker-Planck equation in three-dimensional momentum space is introduced.It includes both binary collision and contribution from plasma collective response.Numerical method as well as kinetic code of the equation is developed.Typical energy deposition cases are presented with comparison with stopping power model.Energy deposition of fast electrons with energy from 0.5 MeV to 3.5 MeV in 300 g·cm^-3 DT plasma are simulated.It shows that scattering angle Φ plays minor role on range and penetration depth of energy deposition of fast electrons.
出处 《计算物理》 CSCD 北大核心 2017年第5期555-562,共8页 Chinese Journal of Computational Physics
基金 大科学装置国家重点研发计划(2016YFA0401100) 国家自然科学基金(91230205 11575031)资助项目
关键词 电子束 能量沉积 相对论Fokker-Planck方程 electron beam energy deposition relativistic Fokker-Planck equation
  • 相关文献

参考文献1

二级参考文献41

  • 1Lindl J D. Inertial Confinement Fusion[M]. New York: Springer-Verlag, 1998.
  • 2Atzeni S, Meyer-ter-Vehn J. The Physics of Inertial Fusion[M]. London: Oxford University Press, 2004.
  • 3Lindl J D. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. PhysPlasmas, 1995, 2: 3933-4024.
  • 4Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Phys Plasmas, 2004, 11: 339-491.
  • 5Tabak M, Hammer J, Glinsky M E, et al. Ignition and high gain with ultrapowerful lasers[J]. Phys Plasmas, 1994, 1: 1626-1634.
  • 6Tahak M, Norreys P, Tikhonchuk V T, et al. Alternative ignition schemes in inertial confinement fusion[J]. Nucl Fusion, 2014, 54: 054001.
  • 7Atzeni S. Inertial fusion fast ignitor: Igniting pulse parameter window vs the penetration depth of the heating particles and the density of theprecompressed fuel[J]. Phys Plasmas, 1999, 6: 3316-3326.
  • 8Key M H. Status of and prospects for the fast ignition inertial fusion concept[J]. Phys Plasmas, 2007, 14: 055502.
  • 9Kodama R, Norreys P, Mima K, et al. Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition[J]. Nature, 2001, 412: 798-802.
  • 10Kodama R, Shiraga H, Shigemori K, et al. Fast heating scalable to laser fusion ignition[J]. Nature, 2002, 418: 933-934.

共引文献1

同被引文献7

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部