期刊文献+

四旋翼无人飞行器控制算法设计 被引量:5

Design of four rotor unmanned spacecraft control algorithm
下载PDF
导出
摘要 针对Qball-X4四旋翼无人飞行器的自身特点,建立系统的非线性模型,采用姿态内环和位置外环的双闭环控制算法。线性二次型调节器(LQR)可以快速简便地求解出最优的状态反馈控制率,并且具有良好的鲁棒性,因而利用LQR控制算法来控制姿态内环。由于PID控制算法结构简单、鲁棒性强,因而控制位置外环。通过Matlab/Simulink和飞行试验对控制算法进行仿真和验证,结果表明,设计的控制算法能成功地实现飞行器的悬停控制,并达到较好的控制效果。 For Qball-X4 four-rotor unmanned aircraft with its own characteristics, creating nonlinear model of system and adopting double closed-loop control algorithm with inner and outer loop are controlled by attitude and position respectively. Linear quadratic regulator is easy to solve state feedback control rate quickly, and has good robustness, thus LQR is utilized to design attitude inner loop controller. Due to the PID control algorithm has simple structure, strong robustness,thus PID is utilized to design position loop controller. Utilize Matlab/Simulink and flight test to verify control algorithm,and the result shows that the control algorithm can successfully achieve the hovering control, and achieve good control effect.
作者 赵玥 陈奕梅
出处 《计算机工程与应用》 CSCD 北大核心 2017年第21期49-53,共5页 Computer Engineering and Applications
基金 天津市自然科学基金(No.15JCYBJC47800)
关键词 四旋翼无人飞行器 非线性模型 线性二次型调节器 PID控制算法 four-rotor unmanned aircraft nonlinear model linear quadratic regulator PID control algorithm
  • 相关文献

参考文献4

二级参考文献35

  • 1陈丽,李建更,乔俊飞,王笑波.FNN模型参考自适应控制在轧机液压弯辊系统中的应用[J].计算机测量与控制,2005,13(12):1396-1399. 被引量:5
  • 2张洪钺.现代控制理论:第二册最优控制理论[M].北京:航空学院出版社,1987:75-117.
  • 3恰耳兹·布罗克斯梅耶.惯性导航系统[M].致学译.北京:国防工业出版社,1972.
  • 4Altug E, Ostrowski J P, Taylor C J. Quadrotor control using dual camera visual feedback[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2003: 4294-4299.
  • 5Valenti M, Bethke B, Fiore G, et al. Indoor multi-vehicle flight testbed for fault detection, isolation, and recovery[C]//Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit. Reston, VA, USA: AIAA, 2006.
  • 6Bouabdallah S, Siegwart R. Full control of a quadrotor[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2007: 153- 158.
  • 7Pounds P, Mahony R, Corke E Modelling and control of a large quadrotor robot[J]. Control Engineering Practice, 2010, 18(7): 691-699.
  • 8Hoffmann G M, Huang H M, Waslander S L, et al. Precision flight control for a multi-vehicle quadrotor helicopter testbed[J]. Control Engineering Practice, 2011, 19(9): 1023-1036.
  • 9Alexis K, Nikolakopoulos G, Tzes A. Switching model predictive attitude control for a quadrotor helicopter subject to atmospheric disturbances[J]. Control Engineering Practice, 2011, 19(10): 1195-1207.
  • 10Mellinger D, Kumar V. Minimum snap trajectory generation and control for quadrotors[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2011: 2520-2525.

共引文献70

同被引文献46

引证文献5

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部