期刊文献+

基于FPGA的进位存储大数乘法器的改进与实现 被引量:1

Improvement and implementation of carry-save large numbers multiplication on FPGA
下载PDF
导出
摘要 提出了一种基于FPGA的进位存储的大数乘法器的改进算法,该算法采用串并混合结构可以在一个时钟内完成多次迭代计算,减少了完成一次运算的时钟数,因此有效地提高了大数乘法器的速度。最后硬件结构设计在Altera Stratix Ⅱ EP2S90F1508C3上实现,给出了192位、256位以及384位的乘法器性能分析,其中,192位可达到0.18μs,256位达到0.27μs,384位达到0.59μs,速度上都提高了3.5倍左右。 This paper proposes an improved algorithm of carry-save large numbers multiplication on FPGA, which can complete multiple iterations of operation in a clock with a serial-parallel hybrid structure. To some extent, reducing clocks to complete a operation, the structure improves the speed of the large numbers multiplication effectively. Finally, the results of the implementation of this multiplier for several operands sizes(192 bit, 256 bit, 384 bit)on Altera Stratix Ⅱ EP2S90F1508C3 show that the time of 192 bit is 0.185 microsecond, 256 bit is 0.271 microsecond, and 384 bit is 0.595 microsecond. As a result, the paper’s design is about 3.5 times than the previous design in speed.
出处 《计算机工程与应用》 CSCD 北大核心 2017年第21期58-61,共4页 Computer Engineering and Applications
基金 北京市自然科学基金(No.4163076) 北京电子科技学院校内科研基金(No.2014TD1-DXZ)
关键词 大数乘法 串并混合结构 多次迭代 现场可编程门阵列 large numbers multiplication serial-parallel hybrid structure multiple iterations Field Programmable Gate Array(FPGA)
  • 相关文献

参考文献8

二级参考文献72

  • 1Eldridge,S E,Walter,C.D., "Hardware Implementaton of Montgomery's Modular Multiplication Algorithm",IEEE Transaction on computers,Vol.42,pp.693-699,July 1993.
  • 2Walter, C D,"Montgomery Exponentiation Needs No Final Subtractions",Electronics Letters,35(21):1831-1832,October 1999.
  • 3Thomas Blum and Christof Paar,"Montgomery Modular Exponentiation on Reconfigurable Hardware",Proceedings 14th Symposium on computer Arithmetic,pp.70-77,1999.
  • 4Thomas Blum and Christof Paar,"Hight-Radix Montgomery Modular Exponentiation on Reconfigurable Hardware",IEEE Transaction on computers,Vol.50,No.7,July 2001.
  • 5H Orup,"Simplifying quotient Determination in High-Radix Modular Multiplication",Proc.12^th Symp.Computer Arithmetic,pp.193-199,1995.
  • 6.[EB/OL].http://www.aone.cn/aone_introl.htm.,.
  • 7P L Montgomery,"modular Multiplication without Trial Division",Mathematics of Computation,Vol.44,519-521,1985.
  • 8赵俊超.集成电路设计VHDL教程[M].北京:希望电子出版社,2002.
  • 9Booth A D. A signed binary multiplication technique [J]. Quarterly Journal of Mechanics and Applied Mathematics, 1951, 4(2): 236-240.
  • 10Tenca A F, Georgia Todorov, Cretin Kaya Kong. High-radix design of a scalable modular multiplier[C] // Proceedings of the Third International Workshop on Cryptographic Hardware and Embedded Systems, 2001 : 185-201.

共引文献14

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部