期刊文献+

基于随机森林分类的HEVC帧内CU快速划分算法 被引量:2

Fast CU partition algorithm for HEVC intra-frame based on random forest classifier
下载PDF
导出
摘要 针对HEVC帧内编码中递归式四叉树编码单元(Coding Unit,CU)划分引起的高计算复杂度问题,提出了基于随机森林分类(Random Forest Classifier,RFC)的CU快速划分算法。该算法包括模型离线训练和CU快速编码算法两部分。在模型离线训练中,将CU最佳划分结果(+1,-1)作为分类标签,将当前CU的对比度、逆差矩和熵信息作为特征属性,训练RFC模型。在编码时,提取当前CU的特征属性值,利用训练好的RFC模型快速预测当前CU的划分结果。实验结果表明,该算法与HEVC的标准算法相比,在保证编码质量的前提下,平均可以节约45.18%的编码时间。 To reduce the coding computational complexity of the quadtree structured Coding Unit(CU)partition process forintra-framein High Efficiency Video Coding(HEVC), a fast CU splitting algorithm based on Random Forest Classifier(RFC)is proposed. The algorithm includes two parts: model off-line training and CU fast coding algorithm. In the process of off-line training, a RFC model is constructed, where the optimal partition result of current CU is utilized as class label(+1,-1), and the contrast, the inverse different moment and the entropy information of current CU are treated as feature vectors. In the process of encoding, characteristic attribute values of current CU are extracted, then, a trained RFC model is used to predict the class label. The experimental results show that the proposed algorithm can save 45.18%coding time on average under the premise of guaranteeing the coding quality compared with HEVC standard algorithm.
出处 《计算机工程与应用》 CSCD 北大核心 2017年第21期115-120,共6页 Computer Engineering and Applications
基金 2015年度山西省高校科技创新项目(No.20151101)
关键词 随机森林 快速编码 离线训练 CU划分 HEVC random forest fast encoding offline training CU partition High Efficiency Video Coding(HEVC)
  • 相关文献

参考文献2

二级参考文献55

  • 1刘微,罗林开,王华珍.基于随机森林的基金重仓股预测[J].福州大学学报(自然科学版),2008,36(S1):134-139. 被引量:8
  • 2林成德,彭国兰.随机森林在企业信用评估指标体系确定中的应用[J].厦门大学学报(自然科学版),2007,46(2):199-203. 被引量:37
  • 3Breiman L. Bagging Preditors [J].Machine Learning, 1996,24(2).
  • 4Dietterich T. An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting and Randomization [J].Machine Learning, 2000,40(2).
  • 5Ho T K. The Random Subspace Method for Constructing Decision Forests [J].Trans. on Pattern Analysis and Machine Intelligence, 1998,20 (8).
  • 6Amit Y, Gernan D. Shape Quantization and Recognition with Randomized Trees[J]. Neural Computation, 1997,9(7). Breiman L Random Forest[J]. Machine Learning, 2001,45(1).
  • 7Breiman L. Random Forests[J]. Machine Learning, 2001,45(1).
  • 8Tibshirani tL Bias, Variance, and Prediction Error for Classification Rules[C]. Technical Report, Statistics Department, University of Toronto, 1996.
  • 9Wolpert D H, Macready W G. An Efficient Method to Estimate Bagging's Generalization Error[J]. Machine Learning, 1999,35(1).
  • 10Breiman L. Out-of-bag Estimation[EB/OL]. [2010- 06- 30]. http//stat, berkeley, edu/ pub/ users/ breiman / OOB estimation, ps.

共引文献684

同被引文献6

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部