期刊文献+

基于局部临近标准化的FD-KNN故障检测 被引量:4

FD-KNN Fault Detection Based on Local Nearest Neighborhood Standardization
下载PDF
导出
摘要 针对方差相差大的多模态故障诊断数据问题,提出一种基于局部临近标准化(local nearest neighborhood standardization,LNNS)的k近邻故障检测方法(fault detection-k-nearest neighbor rule,FD-KNN)。首先,计算每个样本的局部近邻,采用近邻特征实现标准化,克服传统标准化方法 Z-score将多模态数据看成一个整体而使数据不准确问题;其次,计算每个样本间距离,建立局部临近标准化距离模型,通过临近距离确定控制限。最后,在半导体生产过程中进行仿真应用研究,通过实验结果的比较与分析表明了所提方法的有效性。 For large variance of multi-mode fault diagnosis data, this paper presents the ^-nearest neighbor fault de-tection method (FD-KNN) based on local nearest neighborhood standardization (LNNS) . Firstly, the local nearest neighbor of each sample was calculated and the local nearest neighborhood feature was used to achievization so as to overcome the inaccurate data produced by the traditional standard method of Z-score because it took the multi-mode data as a whole. Secondly, the distance between samples was calculated and a hood standardization distance model was established to determine the control limits based on local distansimulation study was conducted in the process of semiconductor manufacturing and the effectimethod was verified by analyzing comparing the experimental results with those of
出处 《山东科技大学学报(自然科学版)》 CAS 2017年第5期1-6,共6页 Journal of Shandong University of Science and Technology(Natural Science)
基金 国家自然科学基金项目(61673279 61490701) 辽宁省教育厅重点实验室项目(LZ2015059 510.99) 辽宁省教育厅一般项目(L2015432)
关键词 多模态 局部近邻 K近邻 故障检测 multi-mode local nearest neighborhood ^-nearest neighbor fautt detection
  • 相关文献

参考文献1

二级参考文献13

  • 1周东华,李钢,李元.数据驱动的过程故障检测与诊断技术[M].北京:科学出版社,2011.
  • 2Zhou Donghua, Li Gang, Li Yuan. Data-driven Based Process Fault Detection and Diagnosis Technology. Beijing: Science Press, 2011.
  • 3Mac Gregor J F, Cinar A. Monitoring, fault diagnosis, fault-tolerant control and optimization: data driven methods. Computers and Chemical Engineering, 2012, 47:111-120.
  • 4Li G, Qin S J, Zhou D H. Geometric properties of partial leastsquares for process monitoring. Automatica, 2010, 46( 1): 204-210.
  • 5Wold S, Geladi P, Esbensen K. Multi-way principal components and PLS analysis. Journal of Chemometrics, 1987, 1(1):41-56.
  • 6Nomikos P, MacGregor J F. Monitoring batch processes using multiway principal component analysis. AIChE Journal, 1994, 40(8):1361-1375.
  • 7Lee J.M, Yoo C, Choi S.W. Nonlinear process monitoring using kernel principal component analysis. Chemical Engineering Science, 2004, 59:223-234.
  • 8Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, 2000.
  • 9Qin S J. Survey on data-driven industrial process monitoring and diagnosis. Annual Reviews in Control, 2012, 36(2):220-234.
  • 10Xie X, Shi H B. Multimode process monitoring based on fuzzy C-means in locality preserving projection subspace. Chinese Journal of Chemical Engineering, 2012, 20(6): 1174-1179.

共引文献5

同被引文献26

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部