期刊文献+

多天线系统中面向物理层安全的极化编码方法 被引量:5

Polar Code for Physical Layer Security in Multi-antenna Systems
下载PDF
导出
摘要 该文提出一种基于多输入信道最大容量差映射的极化安全编码方法,通过适当降低信道极化速度达到提高安全传输速率的目的。首先,利用信道极化结构,将极化后的逻辑信道按信道质量划分为好信道与差信道两类;然后,通过具体的逻辑信道删除率迭代分析,提出一种能够有效提升差逻辑信道容量并降低好逻辑信道容量的最大容量差信道映射方法,达到降低信道极化速度的目的;最后,利用加权修正合法信道与窃听信道最大容量差映射结果,实现多输入信道下的极化安全编码。仿真结果表明,在极化阶数n=9的二进制删除信道下,所提方法相比随机映射与Arikan方法,安全传输速率分别由0.029,0.004提升到了0.042,并且所提方法同样适用于衰落信道场景。 A maximal-capacity-difference mapping-based secrecy polar coding method is proposed. It improves the secrecy rate by reducing the channel polarization speed. First, the polarized channels are divided into two categoryies based on the polarization structure: the good quality ones and the bad quality ones. By analyzing the eraser rates of the polarized channels, a maximal-capacity-difference mapping method is proposed. Through improving the capacity of the bad polarized channels and reducing that of the good polarized channels, the channel polarization speed decreases efficiently. Finally, weighting is adopted to modify the maximal-capacity-difference mapping results between legitimate channels and wiretap channels, thus the secrecy polar coding in multi-input channel is implemented. Simulation results verify that the secrecy rate of proposed method in binary erasure channels can be increased from 0.029 and 0.004 to 0.042, compared to the random mapping method and Arikan's method at polarization order n =9, respectively. And the proposed method also works in fading channels.
出处 《电子与信息学报》 EI CSCD 北大核心 2017年第11期2587-2593,共7页 Journal of Electronics & Information Technology
基金 国家863计划项目(2015AA01A708) 国家青年科学基金(61501516)~~
关键词 极化编码 物理层安全 信道映射 多输入信道 Polar codes Physical layer security Channel mapping Multi-input channel
  • 相关文献

参考文献1

二级参考文献22

  • 1Wen H, Ho P H,and Jiang X H. On achieving unconditionalsecure communications over binary symmetricchannels(BSC) [J]. IEEE Wireless Communications Letters,2012,1(2): 49-52.
  • 2Ozarow L H and Wyner A D. Wire-tap channel II [J]. BellSystem Technical Journal, 1984, 63(10): 2135-2137.
  • 3Liao W, Chang T, Ma W, et al. QoS-based transmitbeamforming in the presence of eavesdroppers: an optimizedartificial noise aided approach[J]. IEEE Transactions onSignal Processing, 2011,59(3): 1202-1216.
  • 4Tangaraj A, Dihidar S, and Calderbank A R. Applications ofLDPC codes to the wire-tap channel [J]. IEEE Transactionson Information Theory、2007, 53(8): 2933-2945.
  • 5Cassuto Y and Bandic Z. Low-complexity wiretap codes withsecurity and error-correction guarantees[CJ. Proceedings ofIEEE Information Theory Workshop, Dublin, Ireland, 2010:1-5.
  • 6Belfiore J C and Oggier F. Lattice codes design for theRayleigh fading wire-tap channel [C]. Proceedings of IEEEInternational Conference on Communications Workshops,Kyoto, Japan, 2011: 1一5.
  • 7Lin F C and Oggier F. A classification of unimodular latticewiretap codes in small dimensions [J]. IEEE Transactions onInformation Theory, 2013,59(6): 3295-3303.
  • 8Maturo N, Baldi M, Bianchi M, et al.. Security gapperformance of some LDPC code constructions[C].Proceedings of 36th International Conference onTelecommunications and Signal Processing, Rome, Italy, 2013:77-81.
  • 9Baldi M, Bianchi M, and Chiaraluce F. Coding withscrambling, concatenation, and HARQ for the AWGNwire-tap channel: a security gap analysisfJ]. IEEETransactions on Information Forensics Security, 2012, 7(3):883-894.
  • 10Kwark B J, Song N K, Park B, et al. Physical layer securitywith Yarg Code[C]. Proceedings of IEEE International 1Conference on Emerging Network Intelligence, Sliema, Malta,2009: 43-48.

共引文献2

同被引文献35

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部