期刊文献+

基于原模图LDPC码的分布式联合信源信道编码 被引量:4

Protograph LDPC Based Distributed Joint Source Channel Coding
下载PDF
导出
摘要 该文提出一种基于原模图低密度奇偶校验(P-LDPC)码的分布式联合信源信道编译码系统方案。该方案编码端,分布式信源发送部分信息位及校验位以同时实现压缩及纠错功能;译码端,联合迭代信源信道译码的运用进一步发掘信源的相关性以获得额外的编码增益。此外,论文研究了所提方案在译码端未知相关性系数的译码算法。仿真结果表明,所提出的基于P-LDPC码的分布式联合信源信道编译码方案在外部迭代次数不大的情况可以获得较大的性能增益,并且相关性系数在译码端已知和未知系统性能基本相当。 This paper proposes a Distributed Joint Source-Channel Coding(DJSCC) scheme using Protograph Low Density Parity Check(P-LDPC) code. In the proposed scheme, the distributed source encoder sends some information bits together with the parity bits to simultaneously achieve both distributed compression and channel error correction. Iterative joint decoding is introduced to further exploit the source correlation. Moreover, the proposed scheme is investigated when the correlation between sources is not known at the decoder. Simulation results indicate that the proposed DJSCC scheme can obtain relatively large additional coding gains at a relatively small number of global iterations, and the performance for unknown correlated sources is almost the same as that for known correlated sources since correlation can be estimated jointly with the iterative decoding process.
作者 洪少华 王琳
出处 《电子与信息学报》 EI CSCD 北大核心 2017年第11期2594-2599,共6页 Journal of Electronics & Information Technology
基金 福建省自然科学基金(2014J01248) 国家自然科学基金(61271241 61671395)~~
关键词 分布式联合信源信道编码 相关信源 联合迭代译码 原模图LDPC码 Distributed Joint Source-Channel Coding (DJSCC) Correlated sources Iterative joint decoding Protograph LDPC code (P-LDPC)
  • 相关文献

参考文献2

二级参考文献36

  • 1Magli E, Olmo G, and Quacchio E. Optimized onboard lossless and neax-lossless compression of hyperspectral data using CALIC[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(1): 21-25.
  • 2Weinberger M J, Seroussi G, and Sapiro G. LOCO-I lossless image compression algorithm: principles and standardization into JPEGLS[J]. IEEE Transactions on Image Processing, 2000, 9(8): 1309-1324.
  • 3Zhang J, Fowler J E, and Liu G Z. Lossy-to-lossless compression of hyperspectral imagery using there-dimensional TCE and an integer KLT[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 814-818.
  • 4Wang Lei, Wu Jiaji, and Jiao Licheng, et al.. Lossy-to-lossless hyperspectral image compression based on multiplierless reversible integer TDLT/KLT[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(3): 587-591.
  • 5Qian S E. Study of hyperspectral and nmltispectral images compression using vector quantization in development of CCSDS international standards[C]. Image and Signal Processing for Remote Sensing XV, Proc. of SPIE, 2009,Vol. 7477:747700.
  • 6Ma Jing, Wu Chengke, and Li Yunsong, et al.. Dual-direction prediction vector quantization for lossless compression for LASIS data[C]. Proceedings of IEEE Data Compression Conference, Snowbird, UT, Mar. 2009: 458.
  • 7Slepian D and Wolf J K. Noiseless coding of correlated information sources[J]. IEEE Transactions on Information Theory, 1973, 19(4): 471-480.
  • 8Wyner A D and Ziv J. The rate-distortion function for source coding with side information at the decoder[J]. IEEE Transactions on Information Theory, 1976, 22(1): 1-10.
  • 9Liveris A D, Xiong Z, and Georghiades C N. Compression of binary sources with side information at the decoder using LDP'C codes[J]. IEEE Communications Letters, 2002, 6(10): 440-442.
  • 10Aaron A and Girod B. Compression with side information using turbo codes [C]. Proc. IEEE Data Compression Conference, Snowbird, UT, Mar. 2002: 252-261.

共引文献14

同被引文献10

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部