期刊文献+

数学形态学在航空串联故障电弧检测中的应用研究 被引量:2

Application of Mathematical Morphology in the Detection of Aviation Series Arc Fault
下载PDF
导出
摘要 为提高航空串联故障电弧判别的可靠性以及实现对故障模式的准确分类,提出了一种数学形态学梯度和极端学习机相结合的航空交流故障电弧检测方法。通过数学形态学梯度提取线路中电流信号的相关故障特征参数,采用分形维数的思想对特征参数进行处理,引入极端学习机对故障进行分类识别,实现了最终的诊断。试验计算结果表明,串联故障电弧诊断率高达97.5%,所设计的诊断方法具有良好的泛化能力。 In order to improve the reliability of aviation series arc fault identification and realize the accurate classification of the fault modes, an AC arc fault detection method was proposed based on mathematical morphological gradient and extreme learning machine. Extracting the fauh characteristic parameters of current signal in lines through mathematical morphology, the fractal dimension thought is adopted to process the characteristic parameters, introducing extreme learning machine to classify the fault, the final diagnosis was achieved. The experimental results show that the series arc fault diagnosis rate is as high as 97.5% ,and this diagnosis method has good generalization ability.
作者 崔芮华 李思思 贾霄翔 胡文达 CUI Ruihua LI Sisi JIA Xiaoxiang HU Wenda(Institute of Electrical Apparatus, Hebei University of Technology, Tianjin 300130, China)
出处 《电器与能效管理技术》 2017年第19期13-17,共5页 Electrical & Energy Management Technology
基金 河北省自然科学青年基金(E2015202143) 河北省教育厅青年基金(QN2014148)
关键词 航空故障 电弧故障检测 数学形态学梯度 极端学习机 aviation fault arc fault detection mathematical morphological gradient extreme learning machine
  • 相关文献

参考文献4

二级参考文献41

  • 1郁俊莉.基于混沌时间序列的非线性动态系统神经网络建模与预测[J].武汉大学学报(理学版),2005,51(3):286-290. 被引量:4
  • 2杨宣访,方华京.模拟电路故障诊断的神经网络方法综述[J].计算机测量与控制,2006,14(5):564-566. 被引量:18
  • 3李彬,赖晓平.改进的GGAP—RBF算法及其在函数逼近中的应用[J].模式识别与人工智能,2007,20(2):230-235. 被引量:3
  • 4布朗O.B.著,曹荣江等译.控制电器中的电弧[M].北京:中国工业出版社,1965.
  • 5LUO H,WANG Y R,CUI J.A SVDD approach of fuzzy classification for analog circuit fault diagnosis with FWT as preprocessor[J].Expert Systems with Applications,2011,38:10554-10561.
  • 6CUI J,WANG Y R.A novel approach of analog circuit fault diagnosis using support vector machines classifier[J].Measurement,2011,44:281-289.
  • 7AMINIAN M,INIAN F.Neural-network based analog-circuit fault diagnosis using wavelet transform as preprocessor[J].IEEE Trans.on Circuits and Systems,2000,47(2):151-156.
  • 8TAN Y H,HE Y G.A novel method for fault diagnosis of analog circuits based on WP and GPNN[J].International Journal of Electronics,2008,95 (5):431-439.
  • 9HUANG G B,ZHU Q Y,SIEW C K.Extreme learning machine:Theory and applications[J].Neurocomputing,2006,70:489-501.
  • 10HUANG G B,XIAO J D,ZHOU H M.Optimization method based extreme learning machine for classification[J].Neurocomputing,2010,74:155-163.

共引文献204

同被引文献29

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部