期刊文献+

基于下近似分布的变精度邻域粗糙集属性约简算法 被引量:3

Attribute Reduction of Variable Precision Neighborhood Rough Set Based on Lower Approximate Distribution
下载PDF
导出
摘要 利用邻域粗糙集处理数值型数据,可以解决经典粗糙集不能直接处理数值型数据的问题,改进后的变精度邻域粗糙集可以增强抗噪声的能力。但变精度邻域粗糙集的属性约简有不同于邻域粗糙集的特性,需要考虑每个决策类的下近似分布。文中提出可以遵循平均错误率来约简属性,减少计算规模。实验证明,使用UCI数据集与其它算法进行了比较,该算法可以获得理想的结果。 Problems of numerical data that can't be dealt with directly by classical rough sets can be solved by using neighborhood rough sets. Based on this concept,the ability to resist noise can be enhanced by improved variable precision neighborhood rough sets. However,the attribute reduction of variable precision neighborhood rough sets is different from that of neighborhood rough sets,and the lower approximation distribution of each decision class needs to be considered. A model was proposed in this paper,for which the average error rate can be used to help reduce attributes and downsize the computational scale. Experiments show that satisfactory results can be reached when this algorithm is compared with other algorithms by UCI data sets.
作者 沈林 陈建辉 SHEN Lin CHEN Jianhui(College of Information Engineering, Putian University, Putian 351100, China)
出处 《贵州大学学报(自然科学版)》 2017年第4期53-58,共6页 Journal of Guizhou University:Natural Sciences
基金 福建省教育厅项目(JA15458)
关键词 变精度邻域粗糙集 属性约简 下近似分布 variable precision neighborhood rough set attribute reduction lower approximate distribution
  • 相关文献

参考文献5

二级参考文献38

共引文献626

同被引文献9

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部