期刊文献+

基于粒子滤波的多信息融合室内定位算法研究 被引量:5

The research on multiple information fusion indoor positioning algorithm based on particle filter
下载PDF
导出
摘要 针对现有室内定位技术精度低、实现复杂度高等问题,提出一种基于粒子滤波的多信息融合室内定位算法。在传统的行人航迹推算(PDR)以及地磁匹配等室内定位算法的基础上,通过粒子滤波动态地纠正行人步长和方向角,从而有效地减小了定位误差。通过PDR算法获得行人的步频、步长、方向等信息,由地磁匹配算法得到行人所在位置对应的地磁值,最后利用粒子滤波对以上信息进行融合处理从而得到粒子的权重,由粒子权重对步长和方向角不断地修正。实验结果表明,该算法可以实时动态地补偿PDR的定位误差,能够获得较高的定位精度。 Aiming at the problem of low accurcy and high implementation complexity for existing indoor location methods, a multiple information fusion indoor positioning algorithm based on particle filter is presented. On the basis of traditional indoor location algorithm of Pedestrian Dead Reckoning (PDR)and geomagnetic matching, we use the particle filter to dynamically correct the pedes- trians' step length and attitude angle, so as to effectively reduce the positioning error. Step length and attitude information are both obtained through the PDR algorithm, then geomagnetic matching algorithm is used to obtain geomagnetic corresponding to pedestrians position. The particle filter is used to get the weight of the particle through fusing above information, then the step length and at- titude angle are corrected continuously by particle weight. The experimental results show that the algorithm can real-time dynamicly compensate PDR's positioning error, and the system can realize accurate indoor positioning.
作者 王亚娜 蔡成林 李思民 于洪刚 Wang Yana Cai Chenglin Li Simin Yu Honggang(School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China)
出处 《电子技术应用》 北大核心 2017年第11期70-73,共4页 Application of Electronic Technique
基金 国家自然科学基金(61263028) 桂林电子科技大学研究生教育创新计划资助项目(2016YZCX14)
关键词 室内定位 行人航迹推算 地磁匹配 粒子滤波 信息融合 indoor positioning pedestrian dead reckoning geomagnetic matching particle filter information fusion
  • 相关文献

参考文献2

二级参考文献41

  • 1秦杰,陈希,武穆清.A-GPS定位技术的研究与应用[J].数字通信世界,2007(3):53-56. 被引量:4
  • 2VALLIVAARA I, HAVERINEN J, KEMPPAINEN A, et al. Simultaneous localization and mapping using ambient magnetic field[ C ]. Multisensor Fusion and Integration for Intelligent Systems (MFI), 2010 IEEE Conference on. IEEE, 2010: 14-19.
  • 3VALLIVAARA I, HAERINEN J, KEMPPAINEN A, et al. Magnetic field-based SLAM method for solving the localization problem in mobile robot floor-cleaning task[ C]. Advanced Robotics (ICAR) , 2011 15th In- ternational Conference on. IEEE, 2011 : 198-203.
  • 4HAVERINEN J, KEMPPAINEN A. Global indoor self-lo- calization based on the ambient magnetic field[ J]. Robotics and Autonomous Systems, 2009, 57(10): 1028-1035.
  • 5LU X, DONG Y, WANG X. A Monte Carlo Localization algorithm for 2-D indoor self-localization based on mag- netic field [ C ]. Communications and Networking in China (CHINACOM), 2013 8th International ICST Conference on. IEEE, 2013: 563-568.
  • 6LI B, GALLAGHER T, DEMPSTER A G, et al. How feasible is the use of magnetic field alone for indoor posi- tioning[ C ]. Indoor Positioning and Indoor Navigation (IPIN), 2012 International Conference on. IEEE, 2012: 1-9.
  • 7GUNAWAN M, LI B, GALLAGHER T, et al. A new method to generate and maintain a WiFi fingerprinting database automatically by using RFID [ C ]. International Conference on Indoor Positioning and Indoor Navigation. 2012, 13: 15th.
  • 8LIU J S. Metropolized independent sampling with compari- sons to rejection sampling and importance sampling[ J ]. Sta- tistics and Computing, 1996, 6(2) : 113-119.
  • 9WANG C M. Location estimation and uncertainty analysis for mobile robots [ C]. Robotics and Automation, 1988, 1988,1231-1235.
  • 10Want R, Hopper A, Falcao V,et al. The Active Badge LocationSystem[J]. ACM Trans on Information Systems, 1992,10(2) :91-102.

共引文献23

同被引文献29

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部