摘要
Controller vulnerabilities allow malicious actors to disrupt or hijack the Software-Defined Networking. Traditionally, it is static mappings between the control plane and data plane. Adversaries have plenty of time to exploit the controller's vulnerabilities and launch attacks wisely. We tend to believe that dynamically altering such static mappings is a promising approach to alleviate this issue, since a moving target is difficult to be compromised even by skilled adversaries. It is critical to determine the right time to conduct scheduling and to balance the overhead afforded and the security levels guaranteed. Little previous work has been done to investigate the economical time in dynamic-scheduling controllers. In this paper, we take the first step to both theoretically and experimentally study the scheduling-timing problem in dynamic control plane. We model this problem as a renewal reward process and propose an optimal algorithm in deciding the right time to schedule with the objective of minimizing the long-term loss rate. In our experiments, simulations based on real network attack datasets are conducted and we demonstrate that our proposed algorithm outperforms given scheduling schemes.
Controller vulnerabilities allow malicious actors to disrupt or hijack the Software-Defined Networking. Traditionally, it is static mappings between the control plane and data plane. Adversaries have plenty of time to exploit the controller's vulnerabilities and launch attacks wisely. We tend to believe that dynamically altering such static mappings is a promising approach to alleviate this issue, since a moving target is difficult to be compromised even by skilled adversaries. It is critical to determine the right time to conduct scheduling and to balance the overhead afforded and the security levels guaranteed. Little previous work has been done to investigate the economical time in dynamic-scheduling controllers. In this paper, we take the first step to both theoretically and experimentally study the scheduling-timing problem in dynamic control plane. We model this problem as a renewal reward process and propose an optimal algorithm in deciding the right time to schedule with the objective of minimizing the long-term loss rate. In our experiments, simulations based on real network attack datasets are conducted and we demonstrate that our proposed algorithm outperforms given scheduling schemes.
基金
supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 61521003)
The National Key R&D Program of China (No.2016YFB0800101)
the National Science Foundation for Distinguished Young Scholars of China (No.61602509)
Henan Province Key Technologies R&D Program of China(No.172102210615)