期刊文献+

稀疏OFDM信道估计的同伦算法 被引量:1

Homotopy Algorithm for Sparse OFDM Channel Estimation
下载PDF
导出
摘要 针对现有稀疏信道估计面临的复杂度过高、性能不佳、未充分利用稀疏性等缺陷,提出了联合压缩感知和同伦法的稀疏信道估计.主要通过跟踪正则因子,不断更新解方向和迭代步进,从而获得解的更新方程,具有复杂度低,性能好等优势.通过仿真及分析得到:在低信噪比条件下,与传统最小二乘法等算法比较,所提基于压缩感知同伦法的稀疏信道估计算法有20dB性能增益,获得了较好估计性能. Current sparse channel estimation is mainly confronted with the deficiencies, such as high complexity, poor performance, not adequately exploiting the sparse property, and so on. In order to solve these problems, a joint compressive sensing and the homotopy method is proposed to estimate the sparse channel. By tracking the change of regular factors, it constantly updates the direction of the solution and the iterative step. So it can obtain the solution of the update equation. It also has the advantage of low complexity, good performance and so on. The simulation channel estimation is better than the traditional least squares(LS) algorithm. At low signal-to-noise ratio(SNR), the proposed algorithm can obtain about 20 dB performance gain than that of the traditional algorithms. And the computational complexity is also reduced to 1/2 of that of the traditional algorithms. Therefore, it obtains a rather better estimation performance.
出处 《杭州电子科技大学学报(自然科学版)》 2017年第5期17-20,56,共5页 Journal of Hangzhou Dianzi University:Natural Sciences
基金 国家自然科学基金资助项目(61471152) 浙江省自然科学基金资助项目(LY15F010008 LZ14F010003)
关键词 稀疏信道估计 压缩感知 凸优化 同伦法 sparse channel estimation compressive sensing convex optimization homotopy
  • 相关文献

参考文献1

二级参考文献102

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2Emmanuel J. Candès,Michael B. Wakin,Stephen P. Boyd.Enhancing Sparsity by Reweighted ? 1 Minimization[J]. Journal of Fourier Analysis and Applications . 2008 (5-6)
  • 3Richard Baraniuk,Mark Davenport,Ronald DeVore,Michael Wakin.A Simple Proof of the Restricted Isometry Property for Random Matrices[J]. Constructive Approximation . 2008 (3)
  • 4B. S. Kashin,V. N. Temlyakov.A remark on Compressed Sensing[J]. Mathematical Notes . 2007 (5-6)
  • 5Z B Xu,H Y Wang,X Y Chang.L1/2Regularizer. SciChina Ser F-Inf Sci . 2009
  • 6M Elad.Sparse and Redundant Representations:From Theoryto Applications in Signal and Image Processing. . 2010
  • 7R J Duffin,A C Schaeffer.A class of non-harmonic Fourierseries. Trans.AMS . 1952
  • 8M Elad,M Aharon.Image denoising via sparse and redundantrepresentations over learned dictionaries. IEEE Transac-tions on Image Processing . 2006
  • 9K Engan,K Skretting,J H Husoy.A family of iterative LS-based dictionary learning algorithms,ILS-DLA,for sparse sig-nal representation. Digital Signal Process . 2007
  • 10H Zayyani,M Babaie-Zadeh.Thresholded smoothed-L0 (SL0)dictionary learning for sparse representations. IEEE Inter-national Conference on Acoustics,Speech and Signal Process-ing . 2009

共引文献316

同被引文献14

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部