期刊文献+

基于共现分析的中图分类号与关键词对应关系研究 被引量:5

Study on the Correspondence Relationship between Chinese Library Classification Codes and Keywords Based on Co-occurrence Analysis
原文传递
导出
摘要 【目的/意义】分类号与关键词对应关系的研究不仅能够推动计算机自动分类技术的发展,而且有助于改进共类分析和共词分析的效果。【方法/过程】以国内9种图书馆学期刊近五年发表的论文为例,构建中图分类号-关键词隶属关系网络及多重共现网络,对分类号和关键词的对应关系进行计量分析和可视化展示。【结果/结论】研究表明高频共现关系能够直接判定中图分类号与关键词之间的隶属关系,此外还证实分类号-关键词多重共现分析较之传统的单一共现分析方法更具优势。 【Purpose/significance】The research on the correspondence relationship between Chinese Library Classification(CLC) codes and keywords cannot only promote the automatic classification technology, but also improve the methods of coclassification analysis and co-word analysis.【Method/process】Taken 9 journals indexed by CSSCI in the Library Science as the sample, based on the cross co-occurrence of CLC codes and keywords of academic papers published during recent five years, single co-occurrence and multiple co-occurrence networks are constructed and visualized respectively.【Result/conclusion】The results indicate that high frequency co-occurrence can be used to directly determines the correspondence relationship between CLC codes and keywords. The results also confirm that multiple co-occurrence analysis has obviously advantage compared to single co-classification analysis.
作者 温芳芳
出处 《情报科学》 CSSCI 北大核心 2017年第11期121-125,共5页 Information Science
基金 国家社会科学基金青年项目(14CTQ018) 河南省高校科技创新人才支持计划(人文社科类)(2017-cxrc-001)
关键词 多重共现分析 共类分析 共词分析 自动分类 multiple co-occurrence analysis co-classification analysis co-word analysis automatic classification
  • 相关文献

参考文献9

二级参考文献111

共引文献138

同被引文献117

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部