期刊文献+

基于深度学习的城市道路旅行时间预测 被引量:24

Travel Time Prediction of Urban Road Based on Deep Learning
下载PDF
导出
摘要 城市道路旅行时间预测是城市智能交通系统的重要支撑。选择深度学习中的四种长短期记忆神经网络(Long Short-Term Memory,LSTM)架构进行道路旅行时间的预测。固定LSTM隐藏层的节点数以确定模型的最佳输入长度;固定模型的输入长度,分别测试在不同的隐藏层节点数和考虑空间相关性的条件下四种LSTM模型的预测性能;将空间LSTM模型与传统BP(Back Propagation)神经网络等四种模型进行了对比和分析。结果表明相对于其他四种模型,考虑空间相关性的LSTM模型具有更好的拟合和训练能力。 Travel time prediction of urban road is a significant support for urban intelligent transportation system. Four types of LSTM neural network architecture were selected to predict the urban road travel time. The number of nodes in the LSTM hidden layer was fixed to determine the optimal input length of the model. The input length of the model was fixed and the predictive performance of the four LSTM models under different hidden layer nodes and considering spatial correlation were tested respectively. The performance of spatial LSTM model was compared with four traditional models, for example, BP neural network. The results show that the LSTM model with spatial correlation has better fitting and training ability than the four traditional models.
出处 《系统仿真学报》 CAS CSCD 北大核心 2017年第10期2309-2315,2322,共8页 Journal of System Simulation
基金 北京市自然科学基金(8162024)
关键词 交通工程 LSTM 旅行时间预测 空间相关性 深度学习 traffic engineering LSTM travel time prediction spatial correlation deep learning
  • 相关文献

同被引文献174

引证文献24

二级引证文献203

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部