期刊文献+

利用位置信息加权词汇树的图像检索 被引量:1

Image Retrieval Using Weighted Vocabulary Tree with Location Information
下载PDF
导出
摘要 针对基于SIFT特征匹配的图像检索方法忽略空间位置信息的缺陷,提出了基于空间位置信息加权词汇树的图像检索方法。利用分层词汇树将图像SIFT特征量化为视觉单词,将图像匹配转换成视觉单词权值向量匹配。由于单纯的视觉单词权值向量匹配忽略了视觉单词之间的相互位置影响,生成SIFT点的空间位置影响信息,根据SIFT点与视觉单词之间的从属关系,将SIFT点的空间位置影响信息聚类为视觉单词之间的位置影响,将视觉单词的空间位置信息作为加权系数,加入到视觉单词的权值匹配中去,细化特征之间的匹配得分,通过相似度排序检索相似图像。实验结果表明,该算法能有效提高图像检索的精确度。 Aiming at the positional information ignorance problem in image retrieval based on SIFT feature matching, an image retrieval approach using weighted vocabulary tree based on the spatial location information was proposed. The vocabulary tree is used in the method to quantify SIFT features as the visual words, converting the image match into the visual words' weight vector match. Because only visual words'weight match ignored the mutual position effect, SIFT points'spatial location information was generated, and was classified into the position effect of visual words according to affiliation between SIFT points and visual words. The spatial location information of the visual words was used as the weighting factor of weight vector matches, refining the matching score between features. Similar images were retrieved by similarity sort. The experimental results show that the algorithm can effectively improve the accuracy of the image retrieval.
作者 陈莹 郭佳宇
出处 《系统仿真学报》 CAS CSCD 北大核心 2017年第10期2353-2359,2372,共8页 Journal of System Simulation
基金 国家自然科学基金(61104213 61573168) 江苏省产学研前瞻性联合研究项目(BY2015019-15)
关键词 词汇树 位置信息 向量匹配 图像检索 vocabulary tree location information vector matching image retrieval
  • 相关文献

参考文献2

二级参考文献19

  • 1Baeza Y R,Ribeiro N B.现代信息检索[M].王知津,贯福新,郑红军,译.北京:机械工业出版社,2005.03.
  • 2Lowe D G. Distinctive Image Features from Scale-invariant Keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 3Sivic J. Video Google: A Text Retrieval Approach to Object Matching in Videos[C]//Proc. of the International Conference on Computer Vision. [S. l.]: IEEE Press, 2003.
  • 4Nister D. Scalable Recognition with a Vocabulary Tree[C]//Proc. of the Int'l Conf. on Computer Vision and Pattern Recognition. [S. l.]: IEEE Press, 2006.
  • 5Sivic J, Zisserman A. Video Google: A Text Retrieval Approach to Object Matching in Videos // Proc of the 9th IEEE International Conference on Computer Vision. Nice, France, 2003, II: 1470- 1477.
  • 6Kesorn K, Poslad S. An Enhanced Bag-of-Visual Word Vector Space Model to Represent Visual Content in Athletics Images. IEEE Trans on Multimedia, 2012, 14 ( 1 ) : 211-222.
  • 7Lowe D G. Distinctive Image Features from Scale-Invariant Key- points. International Journal of Computer Vision, 2004, 60 ( 2 ) : 91-110.
  • 8Philbin J, Chum O, Isard M, et al. Object Retrieval with Large Vocabularies and Fast Spatial Matching//Proc of the IEEE Confer- ence on Computer Vision and Pattern Recognition. Minneapolis, USA, 2007:1-8.
  • 9Lopez-Sastre R J, Tuytelaars T, Acevedo-Rodriguez F J, et al. Towards a More Discriminative and Semantic Visual Vocabulary. Computer Vision and Image Understanding, 2011, 115 ( 3 ) : 415 - 425.
  • 10Zhang Yin, Jin Rong, Zhou Zhihua. Understanding Bag-of-Words Model: A Statistical Framework. International Journal of Machine Learning and Cybernetics, 2010, 1 (1/2/3/4) : 43-52.

共引文献8

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部