期刊文献+

空间机器人捕获目标后双幂次滑模神经网络补偿控制

Two Power Sliding Mode Neural Network Compensation Control for Space Robot after Target Capturing
下载PDF
导出
摘要 研究了空间机器人系统捕获不确定参数目标时发生碰撞的冲击效应及之后的稳定控制问题。利用多刚体系统理论获得空间机器人及目标动力学模型。利用运动几何关系及机械臂末端与目标物之间力的传递关系,分析了空间机械臂捕获目标的冲击影响。针对完成捕获操作后的联合体系统存在参数不确定及外部扰动的情况,提出了双幂次滑模神经网络方案。利用快速双幂次滑模趋近律保证了系统的收敛速度,运用神经网络逼近系统的参数不确定项及外部扰动,上述控制方案具有抑制抖振的效果。基于李雅普诺夫方法,设计了权值自适应律,证明了系统的全局稳定性。计算机数值仿真实验模拟了碰撞冲击效应,验证了上述控制方案的有效性。 The impact analyses of space robot capturing a target and stability control problem in the post-impact process were discussed. The dynamic models of space robot system and target were derived by multi-body theory. The impact effect of rigidcouplingmodel was analyzed by applying geometric relationship and principle of momentum conservation. Atwo power sliding mode neural network control scheme was proposed for the combined system after acquiring with uncertain system parameters and external disturbance. The convergence speed of the control system was guaranteed by applyingtwo power sliding mode reaching raw, and the uncertain part was compensated by using neural network. The proposed control scheme can eliminate the chattering. Based on the Lyapunov method, the weights adaptive law was designed and the stability of the combined system was demonstrated. Computer numerical simulation example simulated the process of collision impact effect and verified the validity of the proposed control scheme.
作者 程靖 陈力
出处 《系统仿真学报》 CAS CSCD 北大核心 2017年第10期2475-2481,2488,共8页 Journal of System Simulation
基金 国家自然科学基金(11372073,11072061) 福建省工业机器人基础部件技术重大研发平台(2014H21010011)
关键词 漂浮基空间机器人 捕获目标 双幂次趋近律 神经网络 free-floating space robot capture target twopower reaching raw neural network
  • 相关文献

参考文献6

二级参考文献49

  • 1朱蓓蓓,徐建闽,周其节.两连杆柔性前臂机器人的模型转换[J].华南理工大学学报(自然科学版),1997,25(12):7-11. 被引量:1
  • 2戈新生,陈立群,吕杰.空间机械臂非完整运动规划的遗传算法研究[J].宇航学报,2005,26(3):262-266. 被引量:36
  • 3马保离,霍伟.空间机器人系统的自适应控制[J].控制理论与应用,1996,13(2):191-197. 被引量:78
  • 4洪在地,贠超,陈力.柔性臂漂浮基空间机器人建模与轨迹跟踪控制[J].机器人,2007,29(1):92-96. 被引量:62
  • 5Abiko S, Hirzinger G. An Adaptive Control for a Free-floating Space Robot by Using Inverted Chain Approach [C]// Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, USA. USA: IEEE, 2007: 2236-2241.
  • 6Montemerlo M (NASA). 25 Years of Space Automation and Robotics at NASA: An Historical Perspective [C]// Proceedings of the 6th International Symposium on Artificial Intelligence and Robotics & Automation in Space: i-SAIARA 2001. Quebec, Canada: Canadian Space Agency, 2001.
  • 7Lindsay E. Canadian Space Robotics on Board the International Space Station [C]//2005 CCToMM Symposium on Mechanisms, Machines, and Mechatronics. Canada: Canadian Space Agency, 2005: 26-27.
  • 8Nakamura Y, Mukherjee R. Nonholonomic Path Planning of Space Robots via a Bidirectional Approach [J]. IEEE Transaction on Robotics and Automation (S1042-296X), 1991, 7(4): 500-514.
  • 9Michael W. Adaptive Control of Space-based Robot Manipulators [J]. IEEE Transactions on Robotics and Automation (S 1042-296X), 1992, 7(6): 828-835.
  • 10Papadopoulos E, Dudowsky S. On the Nature of Control Algorithms for Free-floating Space Manipulators [J]. IEEE Transactions on Robotics and Automation (S1042-296X), 1991, 7(6): 750-758.

共引文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部