期刊文献+

Initial-Boundary Value Problem for Two-Component Gerdjikov–Ivanov Equation with 3 × 3 Lax Pair on Half-Line

Initial-Boundary Value Problem for Two-Component Gerdjikov–Ivanov Equation with 3 × 3 Lax Pair on Half-Line
原文传递
导出
摘要 The Fokas unified method is Gerdjikov-Ivanonv equation on the half-line. expressed in terms of the solution of a 3 × 3 through the global relation.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2017年第10期425-438,共14页 理论物理通讯(英文版)
基金 Supported by grants from the National Science Foundation of China under Grant No.11671095 National Science Foundation of China under Grant No.11501365 Shanghai Sailing Program supported by Science and Technology Commission of Shanghai Municipality under Grant No 15YF1408100 the Hujiang Foundation of China(B14005)
关键词 two-component Gerdjikov-Ivanov equation initial-boundary value problem Fokas unifiedmethod Riemann-Hilbert problem 初边值问题 Lax对 方程 统一方法 半直线
  • 相关文献

参考文献1

二级参考文献34

  • 1Agarwal R P, Benchohra M, Hamani S. A survey on the existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl Math, 2010, 109: 973-1033.
  • 2Ahmed E, Elgazzar A S. On fractional order differential equations model for nonlocal epidemics. Phys A, 2007, 379: 607-614.
  • 3Balachandran K, Park J Y. Nonlocal Cauchy problem for abstract fractional semilinear evolution equations. Nonlinear Anal Theory Methods and Appl, 2009, 71: 4471-4475.
  • 4Balachandran K, Kiruthika S. Existence of solutions of abstract fractional impulsive semi linear evolution equations. Electron J Qual Theory Differ Equ, 2010, (4): 1-12.
  • 5Balachandran K, Kiruthika S. Existence results for fractional integrodifferential equations with nonlocal condition via resolvent operators. Comput Math Appl, 2011, 62: 1350-1358.
  • 6Balachandran K, Trujillo J J. The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces. Nonlinear Anal Theory Methods and Appl, 2010, 72: 4587-4593.
  • 7Balachandran K, Kiruthika S, Trujillo J J. Existence results for fractional impulsive integrodifferential equations in Banach spaces. Commun in Nonlinear Sci and Numer Simul, 2011, 16: 1970-1977.
  • 8Balachandran K, Kiruthika S, Trujillo J J. On fractional impulsive equations of Sobolev type with nonlocal condition in Banach spaces. Comput Math Appl, 2011, 62: 1157-1165.
  • 9Bonilla B, Rivero M, Rodriguez-Oerma L, Trujillo J J. Fractional differential equations as alternative models to nonlinear differential equations. Appl Math Comput, 2007, 187: 79-88.
  • 10Byszewski L. Theorems about the existence and uniqueness of solutions of semilinear evolution nonlocal Cauchy problem. J Math Anal Appl, 1991, 162: 494-505.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部