Initial-Boundary Value Problem for Two-Component Gerdjikov–Ivanov Equation with 3 × 3 Lax Pair on Half-Line
Initial-Boundary Value Problem for Two-Component Gerdjikov–Ivanov Equation with 3 × 3 Lax Pair on Half-Line
摘要
The Fokas unified method is Gerdjikov-Ivanonv equation on the half-line. expressed in terms of the solution of a 3 × 3 through the global relation.
基金
Supported by grants from the National Science Foundation of China under Grant No.11671095
National Science Foundation of China under Grant No.11501365
Shanghai Sailing Program supported by Science and Technology Commission of Shanghai Municipality under Grant No 15YF1408100
the Hujiang Foundation of China(B14005)
二级参考文献34
-
1Agarwal R P, Benchohra M, Hamani S. A survey on the existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl Math, 2010, 109: 973-1033.
-
2Ahmed E, Elgazzar A S. On fractional order differential equations model for nonlocal epidemics. Phys A, 2007, 379: 607-614.
-
3Balachandran K, Park J Y. Nonlocal Cauchy problem for abstract fractional semilinear evolution equations. Nonlinear Anal Theory Methods and Appl, 2009, 71: 4471-4475.
-
4Balachandran K, Kiruthika S. Existence of solutions of abstract fractional impulsive semi linear evolution equations. Electron J Qual Theory Differ Equ, 2010, (4): 1-12.
-
5Balachandran K, Kiruthika S. Existence results for fractional integrodifferential equations with nonlocal condition via resolvent operators. Comput Math Appl, 2011, 62: 1350-1358.
-
6Balachandran K, Trujillo J J. The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces. Nonlinear Anal Theory Methods and Appl, 2010, 72: 4587-4593.
-
7Balachandran K, Kiruthika S, Trujillo J J. Existence results for fractional impulsive integrodifferential equations in Banach spaces. Commun in Nonlinear Sci and Numer Simul, 2011, 16: 1970-1977.
-
8Balachandran K, Kiruthika S, Trujillo J J. On fractional impulsive equations of Sobolev type with nonlocal condition in Banach spaces. Comput Math Appl, 2011, 62: 1157-1165.
-
9Bonilla B, Rivero M, Rodriguez-Oerma L, Trujillo J J. Fractional differential equations as alternative models to nonlinear differential equations. Appl Math Comput, 2007, 187: 79-88.
-
10Byszewski L. Theorems about the existence and uniqueness of solutions of semilinear evolution nonlocal Cauchy problem. J Math Anal Appl, 1991, 162: 494-505.
-
1错在哪里?[J].中学数学教学,1986,0(4):45-46.
-
2刁林.一类具有强阻尼和强时滞的粘弹性方程解的存在性[J].内蒙古师范大学学报(自然科学汉文版),2017,46(5):652-655.
-
3Dianyin HU,Ye GAO,Fanchao MENG,Jun SONG,Yanfei WANG,Mengxi REN,Rongqiao WANG.A unifying approach in simulating the shot peening process using a 3D random representative volume finite element model[J].Chinese Journal of Aeronautics,2017,30(4):1592-1602. 被引量:13
-
4Jian-Bing Zhang,Ying-Yin Gongye,Shou-Ting Chen.Soliton Solutions to the Coupled Gerdjikov-Ivanov Equation with Rogue-Wave-Like Phenomena[J].Chinese Physics Letters,2017,34(9):3-7. 被引量:2
-
5董凤娇,刘泽宇.AKNS系统的对称约束及其哈密顿结构[J].池州学院学报,2017,31(3):33-35.
-
6柯三民,杨文力,江克侠,王春,帅学敏,王展云,石刚.Yang-Baxter deformations of supercoset sigma models with Z_(4m) grading[J].Chinese Physics C,2017,41(11):10-13.
-
7Ning-An LAI,Jianli LIU,Jinglei ZHAO.Blow up for Initial-Boundary Value Problem of Wave Equation with a Nonlinear Memory in 1-D[J].Chinese Annals of Mathematics,Series B,2017,38(3):827-838. 被引量:5
-
8XU Liping,LI Zhi.Transportation Inequalities for Multivalued Stochastic Evolution Equations[J].Journal of Partial Differential Equations,2017,30(3):254-263.
-
9ZHANG Dongshuang.Semi-linear Elliptic Equations on Graph[J].Journal of Partial Differential Equations,2017,30(3):221-231.
-
10WANG Shu,NIU Haiping.Solutions to a 3D Burgers Equation with Initial Discontinuity That Are Two Disjoint Spheres[J].Journal of Partial Differential Equations,2017,30(3):232-253.