摘要
Polyvinyl alcohol( PVA) is a water-soluble synthetic polymer that is hard to biodegrade. PVA-degrading microorganisms were previously reported as unitary bacteria and most of them have been identified as aerobes. In this work,a microbial community was cultured anaerobically and its degradation performance and biodiversity were analyzed. The microbial community was cultured for more than 40 d,which represents a highly efficient degradation performance with a chemical oxygen demand removal efficiency of 88. 48%. Operational taxonomic unit-based analysis of the sequences revealed a highly diverse community in the reactor. To note,metagenome 16s rDNA sequencing delineated 19 phyla and 41 classes. Specifically, proteobacteria, chlamydiae, bacteroidetes,firmicutes,and planctomycetes play key roles in the biodegradation processes. Moreover,the betaproteobacteria class belonging to the proteobacteria phylum was the predominant bacterial members in this community. Our results demonstrated that anaerobic treatment of PVA wastewater is feasible and confers degradation by a highly diverse microbial community.
Polyvinyl alcohol( PVA) is a water-soluble synthetic polymer that is hard to biodegrade. PVA-degrading microorganisms were previously reported as unitary bacteria and most of them have been identified as aerobes. In this work,a microbial community was cultured anaerobically and its degradation performance and biodiversity were analyzed. The microbial community was cultured for more than 40 d,which represents a highly efficient degradation performance with a chemical oxygen demand removal efficiency of 88. 48%. Operational taxonomic unit-based analysis of the sequences revealed a highly diverse community in the reactor. To note,metagenome 16s rDNA sequencing delineated 19 phyla and 41 classes. Specifically, proteobacteria, chlamydiae, bacteroidetes,firmicutes,and planctomycetes play key roles in the biodegradation processes. Moreover,the betaproteobacteria class belonging to the proteobacteria phylum was the predominant bacterial members in this community. Our results demonstrated that anaerobic treatment of PVA wastewater is feasible and confers degradation by a highly diverse microbial community.
基金
Science and Technology Plan of Henan Province,China(No.132300410080)
North China University of Water Resources and Electric Power Postgraduate Education Innovation Program,China(No.YK2015-13)