期刊文献+

Diversity of Mesozoic tin-bearing granites in the Nanling and adjacent regions,South China:Distinctive mineralogical patterns 被引量:14

Diversity of Mesozoic tin-bearing granites in the Nanling and adjacent regions, South China: Distinctive mineralogical patterns
原文传递
导出
摘要 The Nanling and adjacent regions of South China host a series of tin deposits related to Mesozoic granites with diverse petrological characteristics. The rocks are amphibole-bearing biotite granites, or(topaz-) albite-lepidolite(zinnwaldite) granites,and geochemically correspond to mealuminous and peraluminous types, respectively. Mineralogical studies demonstrate highly distinctive and critical patterns for each type of granites. In mealuminous tin granites amphibole, biotite and perthite are the typical rock-forming mineral association; titanite and magnetite are typical accessory minerals, indicating high fO2 magmatic conditions;cassiterite, biotite and titanite are the principal Sn-bearing minerals; and pure cassiterite has low trace-element contents. However,in peraluminous tin granites zinnwaldite-lepidolite, K-feldspar and albite are typical rock-forming minerals; topaz is a common accessory phase, indicative of high peraluminity of this type of granites; cassiterite is present as a uniquely important tin mineral,typically rich in Nb and Ta. Mineralogical distinction between the two types of tin granites is largely controlled by redox state,volatile content and differentiation of magmatic melts. In oxidized metaluminous granitic melts, Sn4+ is readily concentrated in Ti-bearing rock-forming and accessory minerals. Such Sn-bearing minerals are typical of oxidized tin granites, and are enriched in granites at the late fractionation stage. In relatively reduced peraluminous granitic melts, Sn2+ is not readily incorporated into rock-forming and accessory minerals, except for cassiterite at fractionation stage of granite magma, which serves as an indicator of tin mineralization associated with this type of granites. The nature of magma and the geochemical behavior of tin in the two types of granites thus result in the formation of different types of tin deposits. Metaluminous granites host disseminated tin mineralization,and are locally related to deposits of the chlorite quartz-vein, greisen, and skarn types. Greisen, skarn, and quartz-vein tin deposits can occur related to peraluminous granites, but disseminated mineralization of cassiterite is more typical. The Nanling and adjacent regions of South China host a series of tin deposits related to Mesozoic granites with diverse petrological characteristics. The rocks are amphibole-bearing biotite granites, or (topaz-) albite-lepidolite (zinnwaldite) granites, and geochemically correspond to mealuminous and peraluminous types, respectively. Mineralogical studies demonstrate highly distinctive and critical patterns for each type of granites. In mealuminous tin granites amphibole, biotite and perthite are the typical rock-forming mineral association; titanite and magnetite are typical accessory minerals, indicating highjO2 magmatic conditions; cassiterite, biotite and titanite are the principal Sn-bearing minerals; and pure cassiterite has low trace-element contents. However, in peraluminous tin granites zirmwaldite-lepidolite, K-feldspar and albite are typical rock-forming minerals; topaz is a common accessory phase, indicative of high peraluminity of this type of granites; cassiterite is present as a uniquely important tin mineral, typically rich in Nb and Ta. Mineralogical distinction between the two types of tin granites is largely controlled by redox state, volatile content and differentiation of magmatic melts. In oxidized metaluminous granitic melts, Sn4+ is readily concentrated in Ti-bearing rock-forming and accessory minerals. Such Sn-bearing minerals are typical of oxidized tin granites, and are enriched in granites at the late fractionation stage. In relatively reduced peraluminous granitic melts, Sn2+ is not readily incorporated into rock-forming and accessory minerals, except for cassiterite at fractionation stage of granite magma, which serves as an indicator of tin mineralization associated with this type of granites. The nature of magma and the geochemical behavior of tin in the two types of granites thus result in the formation of different types of tin deposits. Metaluminous granites host disseminated tin mineralization, and are locally related to deposits of the chlorite quartz-vein, greisen, and skarn types. Greisen, skarn, and quartz-vein tin deposits can occur related to peraluminous granites, but disseminated mineralization of cassiterite is more typical.
出处 《Science China Earth Sciences》 SCIE EI CAS CSCD 2017年第11期1909-1919,共11页 中国科学(地球科学英文版)
基金 supported by the National Natural Science Foundation of China(Grant No.41230315) the National Key R&D Program of China(Grant No.2016YFC0600203) the Fundamental Research Funds for the Central Universities(Grant No.020614380057).
关键词 含锡花岗岩 中国南方地区 中生代 矿物学 邻近地区 过铝质花岗岩 多样性 黑云母花岗岩 Metaluminous tin granites, Peraluminous granites, Mineral assemblages, Mineralogical indication of mineralization,Nanling and adjacent regions
  • 相关文献

参考文献16

二级参考文献245

共引文献724

同被引文献334

引证文献14

二级引证文献209

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部