期刊文献+

瞬态热传导问题的精细积分-双重互易边界元法 被引量:6

Precise integration DRBEM for solving transient heat conduction problems
下载PDF
导出
摘要 采用双重互易边界元法结合精细积分法求解二维含热源的瞬态热传导问题。针对边界积分方程中热源项和温度关于时间导数项引起的域积分,采用双重互易法处理,将域积分转换为边界积分。采用边界元法将边界积分方程离散后,得到关于时间的微分方程组,并利用精细积分法处理其中的指数型矩阵;对于微分方程组中由边界条件和热源项引起的非齐次项,采用解析的方法计算。为了比较精细积分-双重互易边界元法的计算效果,同时使用有限差分法计算温度对时间的导数项。通过数值算例验证了本文方法的有效性和精确性。计算结果表明:时间步长对于精细积分-双重互易边界元法的结果影响较小,而有限差分法对时间步长比较敏感且只在时间步长选取较小时有效;当选取较大时间步长时,精细积分-双重互易边界元法依然具有良好的计算精度。 The dual reciprocity boundary element method(DRBEM) and the precise integration method(PIM) are combined to analyze transient heat conduction problems with heat sources. The boundary integral equation contains two domain integrals corresponding to the heat source term and the time derivative of temperature, respectively. The dual reciprocity method(DRM) is applied to transform domain integrals into boundary integrals. After the boundary integral equation is discretized, an ordinary differential equation system(ODE) is obtained. The precise integration method is adopted to solve the exponential matrix. The analytical method is used to calculate the inhomogeneous terms in the ODE. Meanwhile, the finite difference method(FDM) is also used to treat the time derivative of temperature and compared with the precise integration method. Numerical examples are presented to validate the efficiency and accuracy of this method. The results show that the time steps have no effect on PI-DRBEM, whereas only in the case of a small time step the FD-DRBEM can obtain accurate results. Even for a very large time step, satisfactory results can still be obtained by the present approach.
出处 《应用力学学报》 CSCD 北大核心 2017年第5期835-841,共7页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金(11672098 11502063) 安徽省自然科学基金(1608085QA07)
关键词 边界元法 双重互易法 精细积分法 有限差分法 瞬态热传导 boundary element method dual reciprocity method precise integration method finite difference method transient heat conduction
  • 相关文献

参考文献3

二级参考文献23

  • 1钟万勰,林家浩.陀螺系统与反对称矩阵辛本征解的计算[J].计算结构力学及其应用,1993,10(3):237-253. 被引量:13
  • 2冯康,Adv Atmos Sci,1991年,1卷,2期,110页
  • 3孙焕纯,高等计算结构动力学,1991年
  • 4张洵安,博士学位论文,2000年
  • 5李骊,强非线性振动系统的定性理论与定量方法,1997年
  • 6钟万勰,大连理工大学学报,1994年,34卷,20期,131页
  • 7钟万勰,计算结构力学与最优控制,1993年
  • 8Masataka T, Toshiro M, Qing F Y. Time-stepping boundary element method applied to 2D transient heat conduction problems[J]. Applied Mathematical Modelling, 1994, 18(10): 569-576.
  • 9Bruch J C, Zyvoloski G. Transient two-dimensional heat conduction problems solved by the finite element method[J]. International Journal for Numerical Methods in Engineering, 1974, 8(3): 481-494.
  • 10Jirousek J, Qin Q H. Application of hybrid-Trefliz element approach to transient heat conduction analysis[J]. Computers & Structures, 1996, 58(1): 195-201.

共引文献522

同被引文献39

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部