期刊文献+

基于t-SNE的随机森林可视化 被引量:1

VISUALIZING RANDOM FOREST BASED ON T-SNE
下载PDF
导出
摘要 随机森林是一种优秀的组合分类器,但缺少较好的解释性。为了使随机森林模型更具理解性和解释性,本文提出一种基于t-SNE的可视化随机森林相似性矩阵的方法:首先运用随机森林学习出样本间的相似性度量矩阵,然后采用t-SNE方法降维,最后可视化。实验证明,该方法比MDS更有效。 Random forest is an excellent ensemble classifier, but it is the lack of interpretability,whmake the random forest model more understandable and interpretable, we put forward a method based on t-SNE. Firstly, we use of ran-dom forest to learn a similarity measiare between the sample, then dimension reduction and visualization by the method of t-SNE. The experiment result shows that the proposed method is more effective than MDS.
出处 《南阳理工学院学报》 2017年第2期15-18,共4页 Journal of Nanyang Institute of Technology
基金 国家自然科学基金(61471124)
关键词 随机森林 黑盒子 解释性 t-SNE 可视化 random forest black box interpretable t-SNE visualization
  • 相关文献

参考文献2

二级参考文献23

  • 1张华伟,王明文,甘丽新.基于随机森林的文本分类模型研究[J].山东大学学报(理学版),2006,41(3):5-9. 被引量:58
  • 2Quinlan J R.C4.5:Programs for Machine Learning,1993.
  • 3BREIMAN L,FREIDMAN J,OLSHEN R. Classification and regression trees[M].Belmont(CA):Wadsworth International Group,1984.358.
  • 4BREIMAN L. Random forests[J].{H}Machine Learning,2001,(45):5-32.
  • 5Quinlan J R. Induction of decision trees[J].Machine Learning,1986,(01):81-106.
  • 6Cortes C,Vapnik V. Support-vector networks[J].Machine Learning,1995,(03):273-297.
  • 7Breiman L. Bagging predictors[J].Machine Learning,1996,(02):123-140.
  • 8Ho T. The random subspace method for constructing decision forests[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,(08):832-844.doi:10.1109/34.709601.
  • 9Chen X,Liu M. Prediction of protein-protein interactions using random decision forest framework[J].Bioinformatics,2005,(24):4394-4400.doi:10.1093/bioinformatics/bti721.
  • 10Pang H,Datta D,Zhao H. Pathway analysis using random forests with bivariate node-split for survival outcomes[J].Bioinformatics,2010,(02):250-258.

共引文献148

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部