期刊文献+

基于自主运行体系结构的通用推理引擎设计

Design of General Reasoning Engine Based on Autonomous Architecture
下载PDF
导出
摘要 为实现基于规则的决策推理,根据自主运行技术的特点对一种基于航天器自主运行体系结构的通用推理引擎设计进行了研究。该体系结构以策略与机制分离为目标,对系统策略、资源和数据进行统筹管理,自主运行系统包括决策系统、系统策略、系统输入和系统输出四部分。在自主运行体系结构的基础上,对传统Rete算法进行改进,优化传统Rete网络结构,取消了Not节点,改变了原Rete算法中的是非逻辑判断,合并了Entry节点、Token节点和适配节点功能。给出了通用推理引擎的推理网络结构,设计了推理算法以实现事实序列的快速推理。某航天器数管分系统的程控功能样例显示:根据飞行过程中产生的事实序列,用设计的推理引擎推理出级箭分离、中继加电、开发动机、关发动机等事件的发生,由此验证了通用推理引擎的有效性。 To achieve the reasoning and decision-making based on rules,the design of general reasoning engine based on autonomous architecture was studied according to the characteristics of autonomous architecture in this paper.The target of the autonomous architecture is to separate strategy and mechanism,which manages the strategies,resources and data of the system.The architecture consists of four parts of decision-making system,system strategy,system input and system output.According to the autonomous architecture,the Rete algorithm was improved by optimizing the traditional Rete network,banning Notnode,changing logic reasoning of yes-no and combining the function of EntryNode,TokenNode and AdapterNode.The reasoning structure of general reasoning engine was presented.The reasoning algorithm was designed to achieve the fast reasoning of the fact sequence.The application sample of program controlling function of a spacecraft data management subsystem showed that the happening of events of separation,relay power on,engine power on and engine power off could be reasoned by the general reasoning engine designed according to the fact in spacecraft flight,which verified the validity of the reasoning engine.
出处 《上海航天》 CSCD 2017年第4期118-124,共7页 Aerospace Shanghai
基金 国家自然科学基金资助(61573247)
关键词 自主运行 推理引擎 RETE算法 推理网络 模式匹配 通用化 规则库 体系结构 autonomous reasoning engine Rete algorithm reasoning network pattern matching generalization rule library architecture
  • 相关文献

参考文献3

二级参考文献20

  • 1[1]Michael M Marshall.Goals for air force autonomous space-craft[R].AD-A105488,1981
  • 2[2]Golden C J. AI applications for space support and satellite autonomy[R].AIAA87-1682,1987
  • 3[3]John L Anderson. Space station autonomy requirements[R].AIAA83-2353,1983
  • 4[4]Barney Pell,Douglas E Bernard,et al.An Autonomous Spacecraft Agent Prototype[J].Autonomous Robots,1998,5(1):1-7
  • 5[5]Nicola Muscettola,P Pandurang Nayak,et al.Remote Agent:To Boldly Go Where No AI System Has Gone Before[J].Artificial Intelligence,1998,103(1-2):5-48
  • 6[6]Doug Bernard,Gregory A Dorais,et al.Remote Agent Experiment[C].Deep Space 1 technology validation symposium,Pasadena,CA,2000
  • 7[7]Douglas E Bernard,Gregory A Dorais,et al.Design of the Remote Agent Experiment for Spacecraft Autonomy[C].Proceedings of IEEE Aerospace Conference,Snomass,CO,1998
  • 8[8]Jet Propulsion Laboratory. New Millennium Program Space Technology 7 (ST7) Technology Announcement[R].NASA,2001
  • 9[9]Muscettola N. HSTS.Integrating planning and scheduling[C].In Intelligent scheduling.San Francisco:Morgon Kaufmann,1994
  • 10[10]Chien S,Rabideau G,et al. Automating planning andscheduling of shuttle payload operation[J].Artificial Intelligence,1999,114:239-255

共引文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部