期刊文献+

移动社交网络中跨域代理重加密朋友发现隐私保护方案研究 被引量:8

Privacy preserving friend discovery cross domain scheme using re-encryption in mobile social networks
下载PDF
导出
摘要 在移动社交网络中,为保证交友过程中的用户隐私,提出跨域环境下的代理重加密交友隐私保护方案。利用跨域多授权中心共享密钥,实现了跨域用户数据的互相访问与共享;利用代理重加密与属性加密技术,对用户属性密钥进行重新加密,实现了以扩充交友访问策略条件的交友匹配;利用用户隐私密文文件与密钥分离技术,增强了用户数据的隐私性。解决了现有方案中存在的用户数据不能跨域跨云共享、交友过少匹配及用户下线不能交友的问题。安全和实验分析表明,方案可以达到选择明文攻击(CPA,chosen plaintext attack)安全,保证交友用户的隐私不被泄露,并且比现有方案更有效。 In order to guarantee the users' privacy in the process of making friends in the mobile social networks, a new scheme of proxy re-encryption privacy protection in the cross-domain environment was introduced. The scheme employed the cross-domain multi-authority to sharing secret keys, so as to realize the access and shave of the cross-domain users data. And the secret keys of users' attributes were re-encrypted, based on the technology of the proxy re-encryption and attribute encryption, to achieve the friends matching under the conditions of extending the access policy. Meanwhile, in purpose of enhancing the privacy of users' data, the technology which contained the separation of users' privacy ciphertext and secret keys was adopted. Based on that, problems in the existing system such as user data's inability to be shared cross-cloud, less matching during the process of making friends and users' inability to make friends when offline had been addressed. Security and experimental analysis show that this scheme can achieve chosen plaintext attack(CPA) security, ensure the privacy of friend discovery, and that is more effective than existing solutions.
出处 《通信学报》 EI CSCD 北大核心 2017年第10期81-93,共13页 Journal on Communications
基金 国家自然科学基金资助项目(No.61632009 No.61472451 No.61272151 No.61502163) 湖南省自然科学基金资助项目(No.2016JJ3051) 中央高校基本科研业务费专项基金资助项目(No.2016zzts060) 湖南省教育厅科研基金资助项目(No.2015C0589) 湖南省重点研发计划基金资助项目(No.2017NK2390) 湖南科技学院计算机应用技术重点建设学科基金资助项目(No.128030219-001)~~
关键词 跨域数据访问 代理重加密 跨域多授权中心 属性加密 隐私保护 cross domain data access, proxy re-encryption, cross domain multi-authority, attribute-based encryption, privacy-preserving
  • 相关文献

参考文献2

二级参考文献16

  • 1Anagnostopoulos A, Kumar R, Mahdian M. Influence and correlation in social networks. In: Proc. of the 14th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. ACM Press, 2008.7-15. [doi: 10.1145/1401890.1401897 ].
  • 2Mislove A, Viswanath B, Gummadi KP, Drusehel P. You are who you know: Inferring user profiles in online social networks. In: Proc. of the 3rd ACM Int'l Conf. on Web Search and Data Mining. ACM Press, 2010.251-260. [doi: 10.1145/1718487.1718519].
  • 3Zheleva E, Getoor L. To join or not to join: The illusion of privacy in social networks with mixed public and private user profiles. In: Proc. of the 18th Int'l Conf. on World Wide Web. ACM Press, 2009. 531-540. [doi: 10.1145/1526709.1526781].
  • 4Narayanan A, Shmatikov V. De-Anonymizing social networks. In: Proc. of the 2009 30th IEEE Symp. on Security and Privacy. IEEE, 2009. 173-187. Idol: 10.1109/SP.2009.22].
  • 5Narayanan A, Shmatikov V. Robust de-anonymization of large sparse datasets. In: Proc. of the 2008. IEEE Symp. on Security and Privacy. IEEE, 2008. 111-125. [doi: 10.1109/SP.2008.33].
  • 6Sarwar B, Karypis G, Konstan J, Riedl J. Analysis of recommendation algorithms for E-commerce. In: Proc. of the 2nd ACM Conf. on Electronic Commerce. ACM Press, 2000. 158-167. [doi: 10.1145/352871.352887].
  • 7Yin Z, Gupta M, Weninger T, Han J. Linkrec: A unified framework for link recommen-dation with user attributes and graph structure. In: Rappa M, ed. Proc. of the 19th Int'l Conf. on World Wide Web. New York: ACM Press, 2010. 1211-1212.
  • 8Gong NZ, Talwalkar A, Mackey L, Huang L, Shin ECR, Stefanov E, Shi E, Song D. Jointly predicting links and inferring attributes using a social-attribute network (san). In: Proc. of the SNA-KDD 2012.2012. http://arxiv.org/pdf/1112.3265.pdf.
  • 9Yang SH, Long B, Smola A, Sadagopan N, Zhcng Z, Zha H. Like like alike--Joint friendship and interest propagation in social networks. In: Sadagopan S, Ramamritham K, Kumar A, Ravindra MP, Bertino E, Kumar R, eds. Proc. of the 20th Int'l Conf. on World Wide Web. New York: ACM Press, 2011. 537-546.
  • 10Zhou B, Pei J. The k-anonymity and 1-diversity approaches for privacy preservation in social networks against neighborhood attacks. Knowledge and Information Systems, 2011,28(1):47-77. [doi: 10.1007/s 10115-010-0311-2].

共引文献69

同被引文献107

引证文献8

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部