期刊文献+

分数Brown运动随机固定资产模型数值解的均方散逸性

Mean-square Dissipativity of Numerical Methods for Stochastic Age-dependent Capital System with Fractional Brown Motion
下载PDF
导出
摘要 讨论一类带分数Brown运动随机固定资产模型数值解的均方散逸性.在一定条件下,根据It?公式和Bellman-Gronwall型引理,得出了模型具有均方散逸性.分别利用分步倒向Euler方法和补偿倒向Euler方法讨论数值解的均方散逸性,并给出数值解散逸存在的充分条件,通过数值算例对所给出的结论进行验证. In this paper, we introduce a class of stochastic age-dependent capital system with fractional Brown motion. By using It's formula and Bellman-Gronwall-type estimates, a sufficient condition is established to guarantee the mean-square dissipativity of this model. Then, it is shown that the mean-square dissipativity is preserved by the split-step backward Euler method and compensated backward Euler method under a step-size constraint. Finally, the theoretical result is illustrated by a numerical experiment.
作者 李强 张启敏 李西宁 LI Qiang ZHANG Qimin LI Xining(School of Mathematics and Computer Science, Beifang University for Nationalities, Yinchuan 750021, Ningxia School of Mathematics and Computer, Ningxia University, Yinchuan 750021, Ningxia)
出处 《四川师范大学学报(自然科学版)》 CAS 北大核心 2017年第5期632-638,共7页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(11461053)
关键词 分数Brown运动 Bellman-Gronwall型引理 补偿倒向Euler方法 均方散逸 fractional brownian motion Bellman-Gronwall-type estimates compensated backward Euler method mean-square dis-sipativity
  • 相关文献

参考文献3

二级参考文献17

  • 1刘小华.THE FINITE ELEMENT METHODS FOR A CLASS OF NONLINEAR PARABOLIC EQUATIONS[J].Numerical Mathematics A Journal of Chinese Universities(English Series),2001,10(1):59-69. 被引量:1
  • 2FEICHTINGER G, HARTL R F, KORT P M, et al. Capital accumulation under technological progress and learning: A vintage capital approach [ J ]. European Journal of Operational Research,2006,172:293 - 310.
  • 3BLOCK G L, ALLEN L J S. Population extinction and quasi - stationary behavior in stochastic density - dependent structured models[ J ]. Bulletin of Mathematical Biology, 2000,62 : 199 - 228.
  • 4METIVER M, PELLAUMAIL J. Stochastic integration [ M ]. New York: Academic Press, 1980.
  • 5Shen F,Zhang Q,Yang H,Pei Y.Existence,uniqueness and exponential stability for stochastic fuzzy age-dependent capital system[J].International Journal of Applied Mathematics and Statistics,2013,51(21):356-373.
  • 6Tan J,Rathinasamy A,Wang H,Guo Y.Strong convergence of the split-step 0-method for stochastic age-dependent capital system with random jump magnitudes[J].Abstract and Applied Analysis,2014,ID 791048,14 pages.
  • 7Zhang Q,Liu Y,Li X.Strong convergence of split-step backward Euler method for stochastic age-dependent capital system with Markovian switching[J].Applied Mathematics and Computation,2014,235(25):439-453.
  • 8Ali Foroush Bastani,Mahdieh Tahmasebi.Strong convergence of split-step backward Euler methodfor stochastic differential equations with nonsmooth drift[J].Journal of Computational and Applied Mathematics,2012,236(7):1903-1918.
  • 9Wu F,Mao X,Szpruch L.Almost sure exponential stability of numerical solutions for stochastic delay differential equations[J].Numerische Mathematik,2010,115(4):681-697.
  • 10Shiryayev A N.Probablity[M].Springer,Berlin,Germany,1996.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部