摘要
讨论一类带分数Brown运动随机固定资产模型数值解的均方散逸性.在一定条件下,根据It?公式和Bellman-Gronwall型引理,得出了模型具有均方散逸性.分别利用分步倒向Euler方法和补偿倒向Euler方法讨论数值解的均方散逸性,并给出数值解散逸存在的充分条件,通过数值算例对所给出的结论进行验证.
In this paper, we introduce a class of stochastic age-dependent capital system with fractional Brown motion. By using It's formula and Bellman-Gronwall-type estimates, a sufficient condition is established to guarantee the mean-square dissipativity of this model. Then, it is shown that the mean-square dissipativity is preserved by the split-step backward Euler method and compensated backward Euler method under a step-size constraint. Finally, the theoretical result is illustrated by a numerical experiment.
作者
李强
张启敏
李西宁
LI Qiang ZHANG Qimin LI Xining(School of Mathematics and Computer Science, Beifang University for Nationalities, Yinchuan 750021, Ningxia School of Mathematics and Computer, Ningxia University, Yinchuan 750021, Ningxia)
出处
《四川师范大学学报(自然科学版)》
CAS
北大核心
2017年第5期632-638,共7页
Journal of Sichuan Normal University(Natural Science)
基金
国家自然科学基金(11461053)