期刊文献+

基于雷电物理的风机叶片动态击距与电气几何模型 被引量:15

Dynamic Striking Distance and Electrical Geometry Model of Wind Turbine Blades Based on Lightning Physics
下载PDF
导出
摘要 风机叶片遭受雷击现已成为风电场亟需解决的问题之一。该文将电气几何方法与雷电先导发展的物理过程相结合,提出了针对风机叶片的电气几何分析模型。通过引入风机叶片动态击距的概念及分析方法,模拟了雷电先导的发展过程,使得击距的物理意义更加清晰,并进一步推导了叶片防雷系统效率的计算方法,最后基于风机叶片长间隙下击穿实验验证了该模型的有效性。利用提出的风机叶片电气几何模型,分析了叶片角度、雷电流幅值和接闪器布置对防雷系统效率的影响,分析发现叶片越接近水平、雷电流幅值越小叶片防雷系统效率越低,增设叶片侧接闪器能够有效提高防雷系统效率。该文提出的方法拟为风机叶片的防雷设计与评估提供理论依据。 The damage of wind turbine blades suffered lightning strikes has been a key factor of the safe and reliable operation of wind farms. The electric geometrical model of wind turbine blades (EGMTB) was presented based on the traditional electric geometrical method and the physical process of lightning leader. The concept of dynamic striking distance was introduced and clarified the physical meaning of striking distance. And the calculation method of blade lightning protection system (LPS) efficiency was deduced. Finally, the effectiveness of EGMTB was validated by. the long gap breakdown experiment of blades. The EGMTB was used to analyze the influence factors of blade LPS efficiency. It is indicated that the efficiency of blade LPS reduces with the decrease of lightning current and the angle between the blade and horizontal, and the efficiency of blade LPS can be improved by increasing the side lightning receptors. The EGMTB is intended to provide a theory for lightning protection design and evaluation of wind turbine blades.
出处 《中国电机工程学报》 EI CSCD 北大核心 2017年第21期6427-6436,共10页 Proceedings of the CSEE
基金 国家自然科学基金项目(51677110 51420105011) 新能源电力系统国家重点实验室开放课题(LAPS16018)~~
关键词 风机叶片 电气几何模型 雷电防护 先导发展模型 动态击距 防雷系统效率 wind turbine blade electric geometrical model lightning protection leader progression model striking distance efficiency of lightning protection system (LPS)
  • 相关文献

参考文献6

二级参考文献107

  • 1薛根元,冯国标,何凤翩,郑选军,包月红.闪电监测定位系统及其应用[J].气象科技,2004,32(4):274-277. 被引量:37
  • 2Cooray V.Lightning protection[M].London:Institution of Engineering and Technology,2010:182-239.
  • 3Bazelyan E M,Raizer Y P.Lightning physics and lightning protection[M].London:Institute of Physics Publishing,2000:241-247.
  • 4Uman M A.The lightning discharge[M].New York:Cambridge University Press,2008:20-21.
  • 5He Jinliang,Tu Youping,Zeng Rong,et al.Numeral analysis model for shielding failure of transmission line under lightning stroke[J].IEEE Transactions on Power Delivery,2005,20(2):815-822.
  • 6Taniguchi S,Tsuboi T,Okabe S,et al.Improved method of calculating lightning stroke rate to large-sized transmission lines based on electric geometry model[J].IEEE Transactions on Dielectrics and Electrical Insulation,2010,17(1):53-62.
  • 7Eriksson A J.An improved electro-geometric model for transmission line shielding analysis[J].IEEE Transactions on Power Delivery,1987,2(2):871-886.
  • 8Dellera L,Garbagnati E.Lightning stroke simulation by means of the leader progression model,partⅠ:description of the model and evaluation of exposure of free-standing structures[J].IEEE Transactions on Power Delivery,1990,5(4):2009-2017.
  • 9Dellera L,Garbagnati E.Lightning stroke simulation by means of the leader progression model,partⅡ:Exposure and shielding failure evaluation of overhead lines with assessment of application graphs[J].IEEE Transactions on Power Delivery,1990,5(4):2023-2029.
  • 10Carrara G,Thione L.Switching surge strength of large air gaps:a physical approach[J].IEEE Transactions on Power Apparatus and Systems,1976,95(2):512-524.

共引文献91

同被引文献136

引证文献15

二级引证文献111

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部