期刊文献+

拟对称packing极小Moran集(英文)

QUASISYMMETRICALLY PACKING-MINIMAL MORAN SETS
下载PDF
导出
摘要 本文研究了一维Moran集的拟对称packing极小性的问题.利用质量分布原理的方法,获得了直线上一类packing维数为1的Moran集为拟对称packing极小集的结果,推广了参考文献中关于拟对称packing极小性的已知结果. In this paper, we study the problem of packing-minimality of 1-dimensional Moran sets. By using the principle of mass distribution, we obtain that a large class of Moran sets on the line with packing dimension 1 is quasisymmetrically packing-minimal, which extends a known result of quasisymmetrically packing-minimality.
出处 《数学杂志》 北大核心 2017年第6期1125-1133,共9页 Journal of Mathematics
基金 Supported by NSFC(11626069) Guangxi Natural Science Foundation(2016GXNSFAA380003) Science Foundation of Guangxi University(XJZ150827)
关键词 拟对称映射 PACKING维数 MORAN集 quasisymmetric mapping packing dimension Moran set
  • 相关文献

参考文献2

二级参考文献17

  • 1Tukia P, ViiisiiUi J. Quasisymmetric embeddings of metric spaces[J]. Ann. Acad. Sci. Fenn. Ser. A I Math., 1980, 5(1): 97-114.
  • 2Heinonen J. Lectures on analysis on metric spaces[M]. Universitext, New York: Springer-Verlag, 2001.
  • 3Bishop C J. Quasiconformal mappings which increase dimension[J]. Ann. Acad. Sci. Fenn. Math., 1999, 24(2): 397-407.
  • 4Tyson J T. Sets of minimal Hausdorff dimension for quasiconformal maps[J]. Proc. Amer. Math. Soc., 2000, 128(11): 3361-3367.
  • 5Kovalev L V. Conformal dimension does not assume values between zero and one[J]. Duke Math. J, 2006, 134(1): 1-13.
  • 6Gehring F W. The £P-integrability of the partial derivatives of a quasiconformal mapping[J]. Acta Math., 1973, 130: 265-277.
  • 7Gehring F W, Vaisala J. Hausdorff dimension and quasiconformal mappings[J]. J. London Math. Soc. (2), 1973, 6: 504-512.
  • 8Tukia P. Hausdorff dimension and quasisymmetric mappings[J]. Math. Scand., 1989,65(1): 152-160.
  • 9Besicovitch A S and Taylor S J. On the complementary intervals of a linear closed set of zero Lebesgue measure[J]. J. London Math. Soc., 1954, 29: 449-459.
  • 10Rao H, Ruan H J, Yang Y M. Gap sequence, Lipschitz equivalence and box dimension of fractal sets[J]. Nonlinearity, 2008, 21(6): 1339-1347.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部