期刊文献+

高灵敏比色检测Cu2+的反蛋白石结构光子晶体水凝胶膜 被引量:6

Highly Sensitive Colorimetric Sensing for Cu^(2+) by Inverse Opals of Photonic Crystal Hydrogels
下载PDF
导出
摘要 以丙烯酰胺(AM)和N-乙烯基咪唑(NVI)为双功能单体,借助"三明治"结构有效控制前驱液的填充,制备了可特异性识别Cu^(2+)的反蛋白石结构光子晶体水凝胶膜(PCHs).该PCHs具有相互贯通的三维有序大孔结构,可在Cu^(2+)缓冲溶液中快速响应,产生特征的布拉格(Bragg)衍射峰.随着Cu^(2+)浓度的增大(0~10-4mol/L),PCHs的Bragg衍射峰位移66 nm,并伴随着明显的颜色变化(由棕红色逐渐变为黄绿色).此外,PCHs在混合金属盐溶液中仍能实现对Cu^(2+)的特异性识别.PCHs对Cu^(2+)的特异识别性、快速响应及自表达的特点为Cu^(2+)现场快速检测提供了可能. Inverse opals of photonic crystal hydrogels(PCHs) composed of acrylamide(AM) and N-vinyl imidazole(NVI) copolymers were fabricated for the specific detection of Cu^(2+). A "sandwich"structure was used to control the precursor infiltration in order to endow PCHs with highly ordered three-dimensional interconnected macroporous structure. The acquired PCHs produced the characteristic Bragg diffraction peak when immersed into Cu^(2+) buffers,and exhibited a rapid response. With the increase of concentration of Cu^(2+)from 0 mol/L to 10-4 mol/L,Bragg diffraction peak of PCHs blueshifted 66 nm and the color change was visible to the naked eyes(from brown to kelly green). Furthermore,PCHs exhibited efficient recognition to Cu^(2+) in the multicomponent metal ion solution. Such a specific recognition,rapid response and signal self-reporting of PCHs to Cu^(2+) provide great potential for the real-time monitor of Cu^(2+).
作者 刘士荣 秦立彦 张晓栋 陈明清 LIU Shirong QIN Liyan ZHANG Xiaodong CHEN Mingqing(Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China)
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2017年第11期1993-1998,共6页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:21571084)资助~~
关键词 “三明治”结构 反蛋白石 光子晶体 水凝胶 Cu2+检测 "Sandwich" structure Inverse opals Photonic crystals Hydrogels Detection of Cu2+
  • 相关文献

参考文献4

二级参考文献51

  • 1金淑萍,柳明珠,陈世兰,卞凤玲,陈勇,王斌,詹发禄,刘守信.智能高分子及水凝胶的响应性及其应用[J].物理化学学报,2007,23(3):438-446. 被引量:37
  • 2陈奋强,刘守信,房喻,王忆娟,张朝阳,姜宇.鹅去氧胆酸分子印迹聚合物微球的制备及选择性分子识别[J].高等学校化学学报,2007,28(11):2195-2199. 被引量:6
  • 3Friedrich T. , Tieke B. , Stadler F. J. , Bailly C. , Langmuir, 2011, 27(6) , 2997-3005.
  • 4Ma Q. , Yang H. , Xu W. , Tan Y. , Chem. Res. Chinese Universities, 2012, 28(6): 1101-110.
  • 5Yang M. , Liu C. , Li Z. , Gao G. , Liu F. , Macromolecules, 2010, 43(24): 10645-10651.
  • 6Lu C. , Xu K. , Li W. B. , Li P. C. , Tan Y. , Wang P. , Chem. Res. Chinese Universities, 2013, 29(6): 1203-1207.
  • 7Richter A. , Paschew G. , Klatt S. , Lienig J. , Amdt K. F. , Adler H. J. , Sensors, 2008, 8( 1 ): 561-581.
  • 8Lee Y. J. , Braun P. V. , Adv. Mater. , 2003, 15(7/8): 563-566.
  • 9Lee K. , Asher S. A. , J. Am. Chem. Soc., 2000, 122(39) , 9534-9537.
  • 10Chen C. , Zhu Y. , Bao H. , Yang X. , Li C. , ACS Applied Materials & lnteaces, 2010, 2(5): 1499-1504.

共引文献20

同被引文献29

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部