期刊文献+

基于最大团的条件偏好挖掘 被引量:2

Conditional preference mining based on Max Clique
下载PDF
导出
摘要 针对在数据库的个性化查询中条件约束(或上下文约束)没有被充分考虑的问题,首先提出了条件约束模型i^+>i^-|X,它表示在上下文X的约束下,相对于i^-,用户更偏好i^+。在此模型的基础上,采用最大团(MaxClique)关联规则算法挖掘获得用户偏好;随后又提出了条件偏好挖掘(CPM)算法,该算法结合上下文用于挖掘偏好规则,从而得出用户的偏好。实验结果表明,基于CPM算法的偏好挖掘模型具有较强的偏好表达能力,将CPM算法与基于Apriori的算法以及CONTENUM算法进行了实验对比,实验的主要参数为最小支持度、最小可信度、数据规模等,实验结果进一步表明所提出的CPM算法可明显提高用户偏好规则的产生效率。 In order to solve the problem that conditional constraints (context constraints) for personalized queries in database were not fully considered, a constraint model was proposed where the context i + 〉 i- IX means that the user prefers i ^+ than i- based on the constraint of context X. Association rules mining algorithm based on MaxClique was used to obtain user preferences, and Conditional Preference Mining (CPM) algorithm combined with context obtained preference rules was proposed to obtain user preferences. The experimental results show that the context preference mining model has strong preference expression ability. At the same time, under the different parameters of minimum support, minimum confidence and data scale, the experimental results of preferences mining algorithm of CPM compared with Apriori algorithm and CONTENUM alaorithm show that the proposed CPM algorithm can obviously improve the generation efficiency of user preferences.
出处 《计算机应用》 CSCD 北大核心 2017年第11期3107-3114,共8页 journal of Computer Applications
基金 国家自然科学基金资助项目(61572419 61572418 61403328)~~
关键词 最大团 关联规则 偏好数据库 条件偏好规则 偏好挖掘 MaxClique association rule preference database conditional preference rule preference mining
  • 相关文献

参考文献3

二级参考文献80

  • 1曾令明,唐常杰,阴小雄,李川,胡建军,蒋永光.双向关联规则挖掘及其相关性分析[J].计算机工程与设计,2005,26(10):2585-2588. 被引量:19
  • 2陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 3Liu D R,Shih Y Y.Integrating AHP and Data Mining for Product Recommendation Based on Customer Lifetime Value.Information and Management,2005,42 (3):387-400.
  • 4Cheng C H,Chen Y S.Classifying the Segmentation of Customer Value via RFM Model and RS Theory.Expert Systems with Applications:An International Journal,2009,36(3):4176-4184.
  • 5Hsieh N C.An Integrated Data Mining and Behavioral Scoring Model for Analyzing Bank Customers.Expert Systems with Applications,2004,27(4):623-633.
  • 6Hughes A M.Strategic Database Marketing.New York,USA:McGraw-Hill,2004.
  • 7Kaymak U.Fuzzy Target Selection Using RFM Variables//Proc of the Joint 9th IFSA World Congress and 20th NAFIPS International Conference.Vancouver,Canada,2001:1038-1043.
  • 8Cho Y S,Ryu K H.Implementation of Personalized Recommendation System Using Demograpic Data and RFM Method in e-Commerce//Proc of the 4th IEEE International Conference on Management of Innovation and Technology.Bangkok,Thailand,2008:475-479.
  • 9Schmittlein D C,Morrison D G,Colombo R.Counting Your Customers:Who Are They and What will They Do Next? Management Science,1987,33(1):1-24.
  • 10Schmittlein D C,Peterson R A.Customer Base Analysis -An Industrial Purchase Process Application.Marketing Science,1994,13 (1):41 -67.

共引文献18

同被引文献9

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部