期刊文献+

一种基于模块化神经网络的场强预测方法 被引量:5

Field Strength Prediction Based on Modular Neural Network
下载PDF
导出
摘要 接收信号场强预测对无线通信网络的设计与规划非常重要.为此,提出了一种基于模块化神经网络的场强预测模型.对于给定的区域,选取一定数量的接收样本点,根据接收信号场强数据的分布特点,使用K均值(K-Means)聚类方法对全部样本点聚类,以实现对输入样本空间的分解,并建立对应的子神经网络模块.以某学校宿舍区域为例,选取了训练集和测试集样本点,通过对比单一神经网络模型和模块化神经网络模型的预测误差,发现模块化神经网络的预测结果优于单一神经网络,证明了所提出模型的有效性. A wireless signal electronic field strength prediction model based on modular neural network is presented. For a given area,a number of receiving points is selected for the sample. All the sample points is clustered with the method of K-means according to the feature of distribution of received signal field strength,for the purpose of decomposing sample space of inputs and setting up corresponding sub-modules of neural network. Sample points of training set and test set is collected in an area of university building. Comparison is made between prediction error obtain from single BP neural network and from modular neural network. The result show that modular neural network model is more accurate than single BP neural network.
出处 《小型微型计算机系统》 CSCD 北大核心 2017年第11期2423-2426,共4页 Journal of Chinese Computer Systems
基金 天津市科技兴海项目(KJXH2011-2)资助
关键词 场强预测 神经网络 模块化神经网络 接收信号强度 field strength prediction neural network modular neural network RSS
  • 相关文献

参考文献2

二级参考文献15

  • 1Liu J, Feng D, Zhang W. Adaptive improved natural gradient algorithm for blind source separation[J]. Neural Computation, 2009, 21(3): 872-889.
  • 2Man Z, Wu H, Liu X. A new adaptive backpropagation algorithm based on Lyapunov stability theory for neural networks[J]. IEEE Trans on Neural Networks, 2006, 17(6): 1580-1591.
  • 3Siu S, Yang S, Lee C, et al. Improving the back-propagation algorithm using evolutionary strategy[J]. IEEE Trans on Circuits and Systems-II: Express Briefs, 2007, 54(2): 171- 175.
  • 4Zweiri Y H. Optimization of a three-term backpropagation algorithm used for neural network learning[J]. Int J ofComputational Intelligence, 2007, 3(4): 322-327.
  • 5Jianye Sun. Local coupled feedforward neural network[J]. Neural Networks, 2010, 23(1): 108-113.
  • 6Seiichi Ozawa, Asim Roy, Dmitri Roussinov. A multitask learning model for online pattern recognition[J]. IEEE Trans on Neural Networks, 2009, 20(3): 430-445.
  • 7Ridella A, Rovetta S, Zunino R. Circular back propagation for classification[J]. IEEE Trans on Neural Networks, 1997, 8(1): 84-97.
  • 8Yah Qiu Chen, David W Thomas, Mark S Nixon. Generating shrinking algorithm for learning arbitrary classification[J]. Neural Networks, 1994, 5(7): 1477-1489.
  • 9王宪保,周德龙,王守觉.基于仿生模式识别的构造型神经网络分类方法[J].计算机学报,2007,30(12):2109-2114. 被引量:10
  • 10乔俊飞,张颖.一种多层前馈神经网络的快速修剪算法[J].智能系统学报,2008,3(2):173-176. 被引量:12

共引文献32

同被引文献25

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部