期刊文献+

基于路径代价和节点代价的信息中心网络缓存策略 被引量:2

Path Cost and Node Cost Based Caching Strategy for Information-centric Network
下载PDF
导出
摘要 网络化缓存是ICN(信息中心网络)架构的重要特征之一,对改善网络性能起着重要作用,如何合理利用有限的缓存空间,在优化缓存部署时实现缓存开销最小是一个值得关注的问题.考虑到缓存开销不仅包含节点访问缓存节点时的路径代价,还应包含被新缓存内容所替换的旧内容的替换代价,提出了基于路径访问代价和节点替换代价的缓存策略(Path and Node Cost based Caching Strategy,简称PNCCS).该文首先建立了一个理论模型来分析缓存部署对路径访问代价和节点替换代价的影响.基于这个模型,缓存部署问题可以形式化地描述成一个最优化问题,并采用离散粒子群优化算法进行求解,最优解代表着一种优化的缓存部署方案.实验结果表明,PNCCS策略与CEE、Prob和LCD相比,在降低网络运行开销的同时提升了用户体验质量两方面的性能指标. In-network caching,a typical feature of information centric networking( ICN) architecture,has played an important role in improving the network performance. One of the important issues with in-network caching is coordinating cache placement to use cache resource maximization and achieve access cost minimization. Considering the cache cost not only contains the path cost raised by hop count between the require node and cache node but also the replacement cost,in this paper,a Path and Node Cost based Caching Strategy( PNCCS) is proposed. A theoretical model is introduced to analyze the path cost and the replacement cost of caching content in the network,in this model,the cache placement problem is formulated as an optimization problem. A discrete particle swarm optimization is proposed to solve the problem,the optimal solution corresponds to an optimal cache placement. The simulation experiments demonstrate that the proposed PNCCS,compared with CEE,Prob and LCD,has significantly improved the network performance in two aspects,i. e.,the operating cost and the quality of user experience.
出处 《小型微型计算机系统》 CSCD 北大核心 2017年第11期2448-2453,共6页 Journal of Chinese Computer Systems
基金 河北省高等学校科学技术研究项目(QN2014327)资助 国家杰出青年科学基金项目(61225012 71325002)资助
关键词 信息中心网络 缓存网络 缓存决策策略 优化算法 information-centric network ( ICN ) caching network caching resolution strategy optimization algorithm
  • 相关文献

参考文献4

二级参考文献63

  • 1Jacobson V,Smetters D K,Thornton J D. Networking named content[A].{H}Rome,Italy,2009.1-12.
  • 2Yi C,Afanasyev A,Wang L. Adaptive forwarding in named data networking[J].ACM SIGCOMM Computer Communication Review,2012,(3):62-67.
  • 3Kideok Cho,Lee Mun-young,Park Kun-woo. WAVE:popularity-based and collaborative in-network caching for content-oriented networks[A].2012.316-321.
  • 4Dan A,Towsley D. An approximate analysis of the lru and fifo buffer replacement schemes[A].Boulder,1990.143-152.
  • 5Leet Dong-hee,Choit Jong-moo,Kim Jong-hun. On the existence of a spectrum of policies that subsumes the Least Rrecently Used(LRU)and Least Frequently Used(LFU)policies[A].Atlanta,1999.134-143.
  • 6Jelenkovic P,Radovanovic A,Squillante M S. Critical sizing of lru caches with dependent requests[J].{H}Journal of Applied Probability,2006,(4):1013-1027.
  • 7Lee Breslau,Pei Cao,Li Fan. Web caching and Zipf-like distributions:evidence and implications[A].NewYork,1999.126-134.
  • 8Laoutaris N,Syntila S,Stavrakakis I. Meta algorithms for hierarchical web caches[A].2004.445-452.
  • 9Chai Wei-koong,He Di-liang,Ioannis P. Cache“Less for More” in information-centric networks[A].Prague,2012.27-40.
  • 10Chai Wei-koong,He Di-liang,Ioannis P. Cache“Less for More” in information-centric networks(extended version)[J].{H}Computer Communications,2013,(7):758-770.

共引文献65

同被引文献4

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部