期刊文献+

基于多重分形理论的心电诊断系统设计与应用 被引量:1

Design and application of electrocardiograph diagnosis system based on multifractal theory
下载PDF
导出
摘要 设计实现了一种利用差分阈值法进行心电数据自动分段算法,该算法可识别连续心电数据的各个心电周期;基于多重分形理论,获取心电数据的多重分形半谱特征和广义Hurst指数特征,用于神经网络模型的训练,以实现心电数据分类,其分类的准确率为97%。实现了心电诊断系统并用于实际应用,该系统能自动识别包含多个周期的心电序列,忽略该心电序列中首尾不完整心电周期数据,并可对心电数据各个周期进行分类标注。 An automatic segmentation algorithm for ECG data using differential threshold method was designed, which could identify the various ECG cycles of continuous ECG data. And it could obtain the multifractal features of multiple fractal and generalize hurst index feature of ECG data, these features were used to train artificial neural network in order to classify ECG data, the accuracy of the classifier could reach 97%. An ECG diagnosis system was implemented, which can automatically identify ECG sequences that contain multiple ECG cycles, and can automatically ignore the incomplete ECG cycle data, and could annotate every cycle of ECG data.
出处 《网络与信息安全学报》 2017年第10期62-71,共10页 Chinese Journal of Network and Information Security
基金 深圳市基础研究基金资助项目(No.JCYJ20170307151518535)~~
关键词 MFDFA 无标度区间 多重分形 神经网络 MFDFA, scale-free interval, multifractal, neural network
  • 相关文献

参考文献3

二级参考文献6

共引文献29

同被引文献11

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部