期刊文献+

基于VaR的最优金融投资问题

Research on the optimal financial investment base on the VaR
下载PDF
导出
摘要 本文运用Va R即在险价值的概念,针对现实生活中的金融投资问题,运用历史数据模型和偏t正态分布模型对公司下一个收益周期的收益情况进行预测,并给出最优的投资金额。运用历史数据方法得出,在投资1000万元的前提下能以95%的置信度保证损失的数额不会超过多少9万元,并且若使一个周期内Va R>=10万元的可能性不大于5%,初始投资额最多应为1111.11万元。运用偏t正态分布模型得出,当投资1000万元时,可以保证亏损值在95%的置信区间内,不超过7.95万元;如果要求在一个周期内的损失超过10万元的可能性不大于5%,那么初始投资额最多应为1257.86万元。 Uses the VaR (Value at Risk) to solve the financial problem in our daily life. We use the historical data model and skewed distribution model to forecast the profit of the next financial period, and provide the best plan to invest. Use the historical data model can draw a conclusion that when the confidence is 95% and put 10 million. The lost no more than 90 thousand yuan. If we want to control the lost under 100 thousand yuan, the best plan is investing 11. 1111 million yuan. Use the skewed distribution model can draw a conclusion that when the confidence is 95% and put 10 million. The lost no more than 79.5 thousand yuan. If we want to control the lost under 100 thousand yuan, the best plan is investing 1257.86 million yuan.
出处 《科技视界》 2017年第22期55-56,共2页 Science & Technology Vision
关键词 金融投资 非参数检验 历史数据模拟法 VAR Financial investment Non- parametric test Historical data model Skewed distribution model VaR
  • 相关文献

参考文献2

二级参考文献14

  • 1Cooray K, Ananda M M A. Modeling actuarial data with a composite lognormal-pareto model[J].Scandinavian Actuarial Journal, 2005, 5: 321-334.
  • 2Ciumara R. An actuarial model based on the composite weibull-pareto distribution [J]. Mathemat- ical Report-Bucharest, 2006, 8(4): 401-414.
  • 3Cabral C R B. Bayesian density estimation using skew student-t-normal mixtures [J]. Computational Statistics and Data Analysis, 2008, 52: 5075-5090.
  • 4Preda V, Ciumara R. On Composite Models:Weibull-Pareto Model and Lognormal-Pareto. A Com- parative study [J]. Romanian Journal of Economic Forecasting, 2006, 7(2):32-46.
  • 5Teodorescu S, Panaitescu E. On the truncated composite weibull-pareto model[J]. Mathematical Report-Bucharest, 2009, 11(61): 259-273.
  • 6Scollnik D P M. On Composite Lognormal-Pareto Models[J]. Scandinavian Actuarial Journal, 2007, 1: 20-33.
  • 7Scollnik D P M, Sun C. Modeling with weibull-pareto models [JI. North American Actuarial Journal, 2012, 16(2): 260-272.
  • 8Eling M. Fitting insurance claims to skewed distributions: are the skew-normal and skew-student good models?[J]. Insurance: Mathematics and Economics, 2012, 51(2): 239-248.
  • 9Ho H J. Maximum llikelihood inference for mixtures of skew student-t-normal distributions through practical era-type algorithms [J]. Star Comput, 2012, 22: 287-295.
  • 10Fernandez C, Steel M F J. On bayesian modeling of fat tails and skewness[J]. Journal of the American Statistical Association, 1998, 93(441): 559-371.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部