期刊文献+

基于多时间尺度的城市轨道交通短时OD估计 被引量:9

Short-term Origin-destination Estimation for Urban Rail Transit Based on Multiple Temporal Scales
下载PDF
导出
摘要 基于状态空间模型构建了城市轨道交通短时OD估计的多模型组合方法,估计早晚高峰期间15 min内进站客流的去向目的站.组合模型以不同时间尺度下的进站客流分流率为状态变量,并利用历史数据预估其中通勤客流的分流率,然后通过交互多模型算法加权融合不同时间尺度下的分流率估计结果.以北京地铁为案例,研究表明:早高峰期间的15 min分流率估计误差的平均值和最大值分别为16.4%和21.8%,晚高峰期间分别为22.7%和24.6%,比既有文献的估计误差减小了约一半.本文的研究成果可为实时的线网客流分布预测提供更准确的输入数据,以辅助运营管理部门实现客流预警和应急响应. To estimate the destinations of the entrance passenger flows at urban rail transit stations in each15 minutes at rush hours, based on state-space models, a multi-model composition approach of short-term origin-destination estimation is proposed. Firstly, the split rates of the entrance passenger flows under different temporal scales are used as the state variables for the composition model. Then the split rates of the commuter entrance passenger flows are estimated based on the historical data. Secondly, the results of the estimated split rates under different temporal scales are weightily fused by the interacting multiple model algorithm. The research of the Beijing subway demonstrates that the average and maximum estimation errors of the split rates at morning rush hours are 16.4% and 21.8% respectively. And those of evening rush hours are 22.7% and 24.6% respectively. The result reduces the estimation errors by nearly one half in comparison with those in present literatures. The results of this paper can provide more accurate input data for the realtime prediction of network traffic distribution to assist the management agency in implementing the early warning and emergency response system on mass passenger flows.
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2017年第5期166-172,共7页 Journal of Transportation Systems Engineering and Information Technology
基金 国家自然科学基金(71390332 71621001-3) 中央高校基本科研业务费专项资金(2017YJS120)~~
关键词 交通工程 短时OD估计 多时间尺度 城市轨道交通 状态转移 traffic engineering short-time OD estimation multiple temporal scales urban rail transit state transition
  • 相关文献

参考文献5

二级参考文献45

  • 1吴祥云,刘灿齐.轨道交通客流量均衡分配模型与算法[J].同济大学学报(自然科学版),2004,32(9):1158-1162. 被引量:58
  • 2STEPHANEDESVJ,MICHALOPOULOSPG,PLUMR A.ImprovedEstimationofTrafficFlowforReal-TimeControl(Discussionandclosure)[J].JournaloftheTransportalionResearchBoard,1981,795:28-39.
  • 3SMITH BL,DEMETSKY M J.TrafficFlow Forecasting:ComparisonofModelingApproaches[J].JournalofTransportationEngineering,1997,123(4):261-266.
  • 4AHMED M S,COOK A R.AnalysisofFreewayTrafficTime-seriesDataby Using Box-jenkins Techniques[J].TransportationResearchRecord:JournaloftheTransportationResearchBoard,1979,722:1-9.
  • 5CHEN HB,GRANT-mullerS.UseofSequentialLearningforShort-term TrafficFlowForecasting[J].TransportationResearchPartC,2001,9(5):319-336.
  • 6OKUTANII,STEPHANEDESYJ.DynamicPredictionofTrafficVolumethroughKalmanFilteringTheory[J].TransportationResearchPartB,1984,18(1):1-11.
  • 7WILLIAMSBM.MultivariateVehicularTrafficFlowPrediction:EvaluationofARIMAX Modeling[J].TransportationReserch Record:Journalofthe Transportation ResearchBoard,2001,1776:194-200.
  • 8WILLIAMSBM,DURVASULAPK,BROMNDE.UrbanFreewayTrafficFlowPrediction:ApplicationofSeasonalAutoregressiveIntegratedMovingAverageandExponentialSmoothingModels[J].Transportation ReserchRecord:Journalofthe Transportation Research Board,1998,1644:132-141.
  • 9盘罗敏.地铁短时客流量预测预警研究[D].北京:首都经济贸易大学,2011:10-15.
  • 10LIDe-wei,YIN Hao-dong.MeasuringPassengerCrowdindexSubwayNetwork:BeijingExperience[C]//TransportationResearchBoard.WashingtonDC:NationalResearchCouncil,2014:1-18.

共引文献69

同被引文献70

引证文献9

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部