摘要
针对果蝇优化算法在寻优过程中易陷入局部极值点的不足,提出一种基于柯西变异的果蝇优化算法.当算法陷入局部最优时采用柯西变异策略,更新果蝇群体位置,使算法继续迭代寻找全局极值.通过六个基准函数对算法性能进行测试,实验结果表明基于柯西变异的果蝇优化算法在收敛速度和收敛精度都有较大提高.
The fruit fly optimization algorithm is easy to fall into local extreme points in the optimization process.To solve this problem,a fruit fly optimization algorithm based on cauchy mutation(Fruit Fly Optimization Algorithmbased on Cauchy Mutation FOACM)is proposed.When the algorithm fall into local extreme points using cauchy mutation strategy to update flies group location and make the algorithm continue iterative and search global extremum.Through the test of six benchmark functions,The experimental results show that the fruit fly optimization algorithm based on cauchy mutation has a great improvement in the convergence speed and convergence precision.
出处
《微电子学与计算机》
CSCD
北大核心
2017年第11期26-30,共5页
Microelectronics & Computer
基金
国家自然科学基金(61202306
61472049)
关键词
果蝇优化算法
柯西变异
基准函数
fruit fly optimization algorithm
cauchy mutation
benchmark function