期刊文献+

区间序信息系统的无监督特征选择 被引量:4

Unsupervised Feature Selection for Interval Ordered Information Systems
下载PDF
导出
摘要 目前已有很多针对单值信息系统的无监督特征选择方法,但针对区间值信息系统的无监督特征选择方法却很少.针对区间序信息系统,文中提出模糊优势关系,并基于此关系扩展模糊排序信息熵和模糊排序互信息,用于评价特征的重要性.再结合一种综合考虑信息量和冗余度的无监督最大信息最小冗余(Um IMR)准则,构造无监督特征选择方法.最后通过实验证明文中方法的有效性. There are a number of unsupervised feature selection methods proposed for single-valued information systems, but little research focuses on unsupervised feature selection of interval-valued information systems. In this paper, a fuzzy dominance relation is proposed for interval ordered information systems. Then, fuzzy rank information entropy and fuzzy rank mutual information are extended to evaluate the importance of features. Consequently, an unsupervised feature selection method is designed based on an unsupervised maximum information and minimum redundancy ( UmImR ) criterion. In the UmImR criterion, the amount of information and redundancy are taken into account. Experimental results demonstrate the effectiveness of the proposed method.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2017年第10期928-936,共9页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61473259 61070074) 国家科技支撑计划(No.2015BAK26B00 2015BAK26B02) 天津大学"北洋青年学者计划"(No.2016XRX-0001)资助~~
关键词 区间序信息系统 无监督特征选择 优势关系 模糊排序互信息 最大信息最小冗余 Interval Ordered Information Systems, Unsupervised Feature Selection, Dominance Relation, Fuzzy Rank Mutual Information, Maximum Information and Minimum Redundancy
  • 相关文献

参考文献3

二级参考文献41

  • 1刘涛,吴功宜,陈正.一种高效的用于文本聚类的无监督特征选择算法[J].计算机研究与发展,2005,42(3):381-386. 被引量:37
  • 2陈宗海,文锋,聂建斌,吴晓曙.基于节点生长k-均值聚类算法的强化学习方法[J].计算机研究与发展,2006,43(4):661-666. 被引量:13
  • 3Han Jia-wei,Kamber M. Data Mining Concepts and Techniques [M]. San Francisco: Morgan Kaufmann, 2001.
  • 4Brendan J F, Delbert D. Clustering by passing messages betweendata points[J]. Science, 2007,0315 (16) : 972-976.
  • 5Zhang Jiang-she, Liang Yin-wing. Improved possibilistic e-means clustering algorithms [J]. IEEE Trans on Fuzzy Systems, 2004, 12(2) :2009-217.
  • 6Berchtolds,Bohm C,Keim D A, et al. A cost model for nearest neighbor search in high-dimensional data space[A]//Procee- dings of the sixteenth ACM SIGMOD Symposium on Principles of database systems[C]. Tucson, Arizona: ACM Press, 1997.
  • 7Ertozi, Stenbachm, Kumarv. Finding clusters of different shapes and densities in noisy high-dimensional data[R]. Minne- sota Department of Computer Science, University of Minnesota, 2002.
  • 8Ham J H, Lee D D, Saul L K. Learning high- dimensional corres- pondences from low dimensional manifolds [C]//Proc of ICML Workshop on the Continuum from Labeled to Unlabeled Data in Machine Learning and Data Mining. Washington, 2003:34-41.
  • 9Dash M, Liu J Y. Dimensionality reduction of unsupervised data [A]//Proc 9th IEEE Int Conf Tool with Artificial Intelligence [C]. 1997 : 532-539.
  • 10Talavera L. Feature selection as a preprocessing step for hierar- chical clustering[A]//Proc 162 Int Conf on Machine Learning [C]. 1999:389-397.

共引文献103

同被引文献20

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部