期刊文献+

基于标记关系的模糊粗糙集模型 被引量:4

Fuzzy Rough Set Model Based on Label Relations
下载PDF
导出
摘要 多标记分类任务中的数据通常是高维的,直接利用高维数据建模可能导致训练效率低下,模型复杂,同时可能影响分类效果.针对多标记数据,文中提出属性-标记矩阵的概念,建立基于标记关系的模糊粗糙集模型,设计此类模型的约简算法,用于多标记数据分类任务的特征选择.在8个公开的数据集上实验验证文中算法的有效性. The data in multi-label classification tasks are usually high dimensional. Utilizing high-dimension data directly for modeling often results in a lower training efficiency or a complex model with the classifier performance reduced. For multi-label data, the concept of attribute-label matrix is proposed, a label relation based fuzzy rough set model is established, and a reduction algorithm of the model is then designed for feature selection of multi-label classification tasks. Finally, the effectiveness of the proposed method is verified on eight public datasets.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2017年第10期952-960,共9页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61672331 61632011 61573231 61432011 U1435212)资助~~
关键词 多标记分类 模糊粗糙集 约简 特征选择 Multi-label Classification, Fuzzy Rough Set, Reduction, Feature Selection
  • 相关文献

参考文献2

二级参考文献36

  • 1Sun Liang,Ji Shuiwang,Ye Jieping.Multi-Label Dimensionality Reduction[M].Florida:CRC Press,2013:20-22.
  • 2Fisher R A.The use of multiple measurements in taxonomicproblems[J].Annals of Eugenics,1936,7(2):179-188.
  • 3Wold H.Estimation of principal components and related models by iterative least squares[J].Multivariate Analysis,1966,1:391-420.
  • 4Zhang Yin,Zhou Zhihua.Multi-label dimensionality reduction via dependence maximization[J].ACM Trans on Knowledge Discovery from Data(TKDD),2010,4(3):14.
  • 5Zhang Minling,Pena J M,Robles V.Feature selection formulti-label naive Bayes classification[J].Information Sciences,2009,179(19):3218-3229.
  • 6Hu Qinghua,Yu Daren,Liu Jinfu,et al.Neighborhoodrough set based heterogeneous feature subset selection[J].Information Sciences,2008,178(18):3577-3594.
  • 7Yu Ying,Pedrycz W,Miao Duoqian.Neighborhood roughsets based multi-label classification for automatic imageannotation[J].International Journal of Approximate Reasoning,2013,54(9):1373-1387.
  • 8Yu Ying,Pedrycz W,Miao Duoqian.Multi-labelclassification by exploiting label correlations[J].Expert Systems with Applications,2014,41(6):2989-3004.
  • 9Trohidis K,Tsoumakas G,Kalliris G,et al.Multi-labelclassification of music into emotions[C]//Proc of the 9th Inl Society for Music Information Retrieval.Philadelphia:ISMIR,2008:325-330.
  • 10Briggs F,Huang Y,Raich R,et al.The 9 annual MLSPcompetition:New methods for acoustic classification of multiple simultaneous bird species in a noisy environment[C]//Proc of 2013 IEEE Int Workshop on Machine Learning for Signal Processing.Los Alamitos.CA:IEEE,2013:22-25.

共引文献120

同被引文献18

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部