期刊文献+

基于IPTV用户行为数据的个性化推荐系统的设计与实现 被引量:1

Design and Realization of Personalized Recommendation System Based on IPTV User Behavior Data
下载PDF
导出
摘要 本文主要研究个性化推荐系统在新媒体行业的应用,通过对数据类型分类,设计联系用户和物品的评测模型,再利用数据采集架构采集用户行为数据,并用协同过滤算法得出推荐结果,解决了在IPTV领域用户量大、资源相对变化慢的个性化推荐问题;针对个性化推荐系统存在的问题,研究行业内相关成果,对个性化推荐系统的发展做出了展望,并对接下来的工作做了安排和计划。 This paper mainly studies the application of the personalized recommendation system in the new media industry: design the model between users and items through the data type classification; then collect the user behavior data by acquisition architecture, and get the recommended results using collaborative filtering algorithm. This way has solved the problems such as the personalized recommendation problem in the IPTV because of large number of users and resources which are relatively slow to change; Finally, analyze the related research in recommended areas in the light of the existing problems, meanwhile, discuss the development of personalized recommendation system and the next arrangements and plans.
作者 樊宇
机构地区 四川广播电视台
出处 《广播电视信息》 2017年第10期75-80,共6页 Radio & Television Information
关键词 IPTV 个性化推荐系统 用户行为数据 协同过滤算法 IPTV Personalized P.econmlendation System User Behavior Data Collaborative filtering Algorithm
  • 相关文献

参考文献2

二级参考文献23

  • 1Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52.
  • 2Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70.
  • 3Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186.
  • 4Shardanand U, Mats P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217.
  • 5Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201.
  • 6Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295.
  • 7Chickering D, Hecherman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables.Machine Learning, 1997,29(2/3): 181~212.
  • 8Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977,B39:1~38.
  • 9Thiesson B, Meek C, Chickering D, Heckerman D. Learning mixture of DAG models. Technical Report, MSR-TR-97-30, Redmond:Microsoft Research, 1997.
  • 10Sarwar B, Karypis G, Konstan J, Riedl J. Analysis of recommendation algorithms for E-commerce. In: ACM Conference on Electronic Commerce. 2000. 158~167.

共引文献606

同被引文献2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部