摘要
在多轴工业机器人的工程应用中,由于实际运行环境的差异,使得永磁同步电机的参数发生改变。为了保证机器人运行时的性能和精度要求,就需要实时了解电机参数的变化情况。针对这一问题,采用最小二乘法对电机的输入输出数据进行实时的递归计算来估计永磁同步电机的定子电阻Rs,交直轴电感等基本参数。仿真结果表明,最小二乘法收敛速度快,辨识精度高,能够很好地辨识电机的诸多基本参数;当λ从0.9增大到0.98时,波动幅度从16.5%降低至0.5%,可见随着λ逐渐变大,波动明显减小,辨识输出更加趋于稳定,辨识精度更高。
In the engineering application of multi-axis industrial robots, the parameters of the permanent magnet synchronous motor are changed due to the difference of the actual operating environment. In order to guarantee the performance and precision of the robot, it is necessary to know the change of the motor parameters dynamically. Aiming at this problem, the least square method ws used to recursively calculate the input and output data of the motor in real time to estimate the basic parameters such asthe stator resistance Rs and the cross-axis inductance L of the permanent magnet synchronous motor. The simulation results show that the least squares method has the advantages of fast convergence speed and high identification precision, which can identify many basic parameters of the motor; range decreases from 16.5% to 0. 5%. It can be When the λ increased from 0. 9 to 0. 98, the fluctuation seen that with the increasing of h, ally reduced, the output of identification tends to be more stable, and the precision
作者
淮亚文
尚俊云
米乾宝
胡静
HUAI Yawen SHANG Junyun MI Qianbao HU Jing(Institute 16th of China Aerospace Academe No. 9, Xi' an 710100, China)
出处
《微电机》
2017年第10期49-52,共4页
Micromotors
关键词
永磁同步电机
参数辨识
最小二乘法
PMSM
parameter identification
recursive least square(RLS) the fluctuation is graduis higher.