期刊文献+

基于RIPPER的网络流量分类方法 被引量:1

Network Flow Classification Methodrule-Based
下载PDF
导出
摘要 利用一种规则学习方法中的重复增量式降低错误剪枝方法解决网络流量分类问题。利用该方法能够挖掘出网络流属性特征和类别之间的相关关系,并将挖掘出的关系构成分类器用于网络流量分类。该方法能够解决传统机器学习方法在网络流量中有大量的不平衡数据集时,分类错误率高等问题。实验证明,该方法在网络流量分类标准数据集上具有很高的分类准确率、查全率和查准率。 In this paper,repeated incremental pruning to produce error reduction which is a rule learning method is used to solve network traffic classification. The method can be used to dig out the correlations between attributes and classes,which are utilized to build a classifier for traffic classification. The proposed method can decrease the classification error rate when the traditional machine learning method has a large number of imbalanced data sets in the network traffic. Experiments show that the method has a very high classification of accuracy,recall and precision in network traffic classification standard data sets.
出处 《哈尔滨理工大学学报》 CAS 北大核心 2017年第5期85-90,共6页 Journal of Harbin University of Science and Technology
基金 国家自然科学基金(60903083 61502123) 黑龙江省新世纪人才项目(1155-ncet-008) 黑龙江省博士后科研启动基金
关键词 网络流量分类 规则学习 重复增量式降低错误剪枝 不平衡数据 traffic classification rule-based learning repeated incremental pruning to produce error reduction unbalanced data
  • 相关文献

参考文献3

二级参考文献28

  • 1许建华,张学工,李衍达.支持向量机的新发展[J].控制与决策,2004,19(5):481-484. 被引量:132
  • 2KIM H, CLAFFY KC, FOMENKOV M. Internet traffic classifica- tion demystified: myths, caveats, and the best practices [ C ]// ACM CoNEXT, December 10 - 12, 2008. 2008:978 - 1 -60558 -210.
  • 3Internet Assigned Numbers Authority IANA. http://www, iana. org/assignments/port-numbers [ S]. May, 2010.
  • 4SEN S, SPATSCHECK O, WANG D. Accurate, scalable in net- work identification of P2P traffic using application signatures [ C]//WWW2004, May 17-22, 2004, New York, USA.
  • 5KARAGIANNIS T., PAPAGIANNAKI K., FALOUTSOS M. BLINC Multilevel traffic classification in the dark [ C]//SIG- COMM' 05, August 22 - 26, 2005, Philadelphia, Pennsylvania, USA. 2005 : 1 - 59593 - 009.
  • 6MOORE A, ZUEV D. Intemet traffic classification using Bayesian analysis techniques ~-C ]//ACM SIGMETR1CS 2005, June 5, 2005, Banff, Alberta, Canada. 2005 : 1 - 59593 - 002.
  • 7NGUYEN T, ARMITAGE G. A survey of techniques for internet traffic classification using machine learning [J]. IEEE Communi- cations Surveys and Tutorials, 2008.
  • 8DUDA J, HART P, STORK D. Pattern classification[ M]. John wiley & sons Inc, 2001.
  • 9VAPNIK V. N. Statistical learning theory, adaptive and learning systems for signal processing, communications, and control [ M ]. New York:Wiley, 1998.
  • 10MOORE D,KEYS K,KOGA R,et al.The CoralReef software suite as a tool for system and network administrators[C]//Proc of the 15th USENIX Conference on System Administration.California:USENIX Association,2001:133-144.

共引文献9

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部